Сomposite Powders TiOx/CdS Synthesis and the Study of their Optical and Photocatalytic Properties

Article Preview

Abstract:

TiOx/CdS composites were synthesized by CdS deposition on TiOx from aqueous solutions of Cd (CH3COO)2 and Na2S with and without addition of a stabilizing agent–Na2SiO3. Initial high-defective TiOx nanocrystalline powders were prepared by pulsed laser ablation (Nd:YAG laser, 1064 nm, 7 ns) of Ti target in H2O. Composites obtained exhibit absorption in the visible range up to 520 nm. On the example of Rhodamine C photodecomposition in water it was revealed that the nanocomposite TiOx/CdS powders obtained exhibit good photocatalytic properties when excited by visible light.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

309-315

Citation:

Online since:

January 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Fujishima and K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature 238 (1972) 37-38.

DOI: 10.1038/238037a0

Google Scholar

[2] V. Vergaro, E. Aldieri, I. Fenoglio, A. Marucco, C. Carlucci, and G. Ciccarella, Surface reactivity and in vitro toxicity on human bronchial epithelial cells (BEAS-2B) of nanomaterials intermediates of the production of titania-based composites, Toxicology in Vitro 34 (2016).

DOI: 10.1016/j.tiv.2016.04.003

Google Scholar

[3] X. Zhu, J. Zhou and Z. Cai, The toxicity and oxidative stress of TiO2 nanoparticles in marine abalone (Haliotis diversicolor supertexta), Mar. Pollut. Bull. 63 (2011) 334-338.

DOI: 10.1016/j.marpolbul.2011.03.006

Google Scholar

[4] Q. He, Y. Zhang, X. Cai and S. Wang, Fabrication of gelatin–TiO2 nanocomposite film and its structural, antibacterial and physical properties, Int. J. Biol. Macromol. 84 (2016) 153-160.

DOI: 10.1016/j.ijbiomac.2015.12.012

Google Scholar

[5] C. Dumitriu, M. Popescu, C. Ungureanu and C. Pirvu, Antibacterial efficiencies of TiO2 nanostructured layers prepared in organic viscous electrolytes, Appl. Surf. Sci. 341 (2015) 157-165.

DOI: 10.1016/j.apsusc.2015.02.183

Google Scholar

[6] V. G. Deshmane, S. L. Owen, R. Y. Abrokwah and D. Kuila, Mesoporous nanocrystalline TiO2 supported metal (Cu, Co, Ni, Pd, Zn, and Sn) catalysts: Effect of metal-support interactions on steam reforming of methanol, J. Mol. Catal. A. 408 (2015).

DOI: 10.1016/j.molcata.2015.07.023

Google Scholar

[7] M.R. Espino-Estévez, C. Fernández-Rodríguez, O. M. González-Díaz, J. Araña, J.P. Espinós, J.A. Ortega-Méndez, and J. M. Doña-Rodríguez, Effect of TiO2–Pd and TiO2–Ag on the photocatalytic oxidation of diclofenac, isoproturon and phenol, Chem. Eng. J. 298 (2016).

DOI: 10.1016/j.cej.2016.04.016

Google Scholar

[8] D. Li, J. Jia, T. Zheng, X. Cheng, and X. Yu, Construction and characterization of visible light active Pd nano-crystallite decorated and C-N-S-co-doped TiO2 nanosheet array photoelectrode for enhanced photocatalytic degradation of acetylsalicylic acid, Appl. Catal. B. 188 (2016).

DOI: 10.1016/j.apcatb.2016.02.019

Google Scholar

[9] B. Han, S. Liu, Zi-R. Tang and Yi-J. Xu, Electrostatic self-assembly of CdS nanowires-nitrogen doped graphene nanocomposites for enhanced visible light photocatalysis, J. Energy Chem. 24 (2015) 145-156.

DOI: 10.1016/s2095-4956(15)60295-9

Google Scholar

[10] Y. Chen, Q. Tao, W. Fu and H. Yang, Synthesis of PbS/Ni2+ doped CdS quantum dots cosensitized solar cells: Enhanced power conversion efficiency and durability, Electrochim. Acta 173 (2015) 812-818.

DOI: 10.1016/j.electacta.2015.05.013

Google Scholar

[11] P. Huo, M. Zhou, Y. Tang, X. Liu, C. Ma, L. Yu, and Y. Yan, Incorporation of N–ZnO/CdS/Graphene oxide composite photocatalyst for enhanced photocatalytic activity under visible light, J. Alloys Compd. 670 (2016) 198-209.

DOI: 10.1016/j.jallcom.2016.01.247

Google Scholar

[12] K. Zhao, Z. Wu, R. Tang, Y. Jiang, and Y. Lu, One-pot hydrothermal synthesis of CdS-TiO2 heterojunctions with enhanced visible light photocatalytic activity, Res. Chem. Intermed. 41 (2015) 4405-4411.

DOI: 10.1007/s11164-014-1539-3

Google Scholar

[13] B. Gao, X. Yuan, P. Lu, B. Lin, and Y. Chen, Enhanced visible-light-driven photocatalytic H2-production activity of CdS-loaded TiO2 microspheres with exposed (001) facets, J. Phys. Chem. Solids. 87 (2015) 171-176.

DOI: 10.1016/j.jpcs.2015.08.018

Google Scholar

[14] W. Dong, F. Pan, L. Xu, M. Zheng, C. H. Sow, K. Wub, G. Q. Xu, and W. Chen, Facile synthesis of CdS@TiO2 core–shell nanorods with controllable shell thickness and enhanced photocatalytic activity under visible light irradiation, Appl. Surf. Sci. 349 (2015).

DOI: 10.1016/j.apsusc.2015.04.207

Google Scholar

[15] X. Chen, Z. Lan, S. Zhang, J. Wu, and J. Zhang, CdS sensitized TiO2 nanorod arrays based solar cells prepared with polymer-assisted layer-by-layer adsorption and reaction method, Opt. Commun. In Pres. (2016).

DOI: 10.1016/j.optcom.2016.04.050

Google Scholar

[16] M. Lei, K. Bi, Y.B. Zhang, K. Huang, X.L. Fu, H.J. Yang, D.Y. Fan, Y.G. Wang, X. Wang, and R.X. Jia, Highly selective growth of TiO2 nanoparticles on one tip of CdS nanowires, J. Alloy Compd. 646 (2015) 1004-1008.

DOI: 10.1016/j.jallcom.2015.06.043

Google Scholar

[17] X. Li, X. Chen, H. Niu, X. Han, T. Zhang, J. Liu, H. Lin, and F. Qu, The synthesis of CdS/TiO2 hetero-nanofibers with enhanced visible photocatalytic activity, J. Colloid Interface Sci. 452 (2015) 89-97.

DOI: 10.1016/j.jcis.2015.04.034

Google Scholar

[18] X. Li, J. Wang, Y. Men and Z. Bian, TiO2 mesocrystal with exposed (001) facets and CdS quantum dots as an active visible photocatalyst for selective oxidation reactions, Appl. Catal., B 187 (2016) 115-121.

DOI: 10.1016/j.apcatb.2016.01.034

Google Scholar

[19] C. Li, W. Chen, J. Yuan, M. Chen, and W. Shangguan, Biomolecule-assisted synthesis of nanocrystalline CdS and Bi2S3 for photocatalytic hydrogen evolution, WJNSE. 1 (2011) 79-83.

DOI: 10.4236/wjnse.2011.13012

Google Scholar

[20] D. Philip, Optical properties of citrate-stabilized CdS nanoparticles, Physica E. 41 (2009) 1727-1731.

DOI: 10.1016/j.physe.2009.06.010

Google Scholar

[21] A. Dumbrava, G. Prodan, D. Berger and M. Bica, Properties of PEG-capped CdS nanopowders synthesized under very mild conditions, Powder Technol. 270 (2015) 197-204.

DOI: 10.1016/j.powtec.2014.10.012

Google Scholar

[22] L. Chen, J. Zhu, Q. Li, S. Chen, and Y. Wang, Controllable synthesis of functionalized CdS nanocrystals and CdS/PMMA nanocomposite hybrids, Eur. Polym. J. 43 (2007) 4593-4601.

DOI: 10.1016/j.eurpolymj.2007.08.008

Google Scholar

[23] A. Biryukov, E. Gotovtseva and V. Svetlichnyi, Spectral-Luminescence Properties of Water Dispersions of CdS and Ag Nanoparticles Stabilized with Na2SiO3, Key Eng. Mater. 683 (2016) 325-330.

DOI: 10.4028/www.scientific.net/kem.683.325

Google Scholar

[24] A.S. Nikolov, P.A. Atanasov, D.R. Milev, T.R. Stoyanchov, A.D. Deleva, and Z.Y. Peshev, Synthesis and characterization of TiOx nanoparticles prepared by pulsed-laser ablation of Ti target in water, Appl. Surface Sci. 255 (2009) 5351-5354.

DOI: 10.1016/j.apsusc.2008.09.007

Google Scholar

[25] V.A. Svetlichnyi and I.N. Lapin, Structure and properties of nanoparticles fabricated by laser ablation of Zn metal targets in water and ethanol, Rus. Phys. J. 56 (2013) 581-587.

DOI: 10.1007/s11182-013-0071-z

Google Scholar

[26] V. Svetlichnyi, A. Shabalina, I. Lapin, D. Goncharova and A. Nemoykina, ZnO nanoparticles obtained by pulsed laser ablation and theircomposite with cotton fabric: Preparation and study of antibacterial activity, Appl. Surf. Sci. 372 (2016) 20-29.

DOI: 10.1016/j.apsusc.2016.03.043

Google Scholar