[1]
V. Ivanov, A. Shcherbakov, A. Usatenko, Structure-sensitive properties and biomedical applications of nanodispersed cerium dioxide. Russ. Chem. Rev., 78(9) (2009) 855-71.
DOI: 10.1070/rc2009v078n09abeh004058
Google Scholar
[2]
V. Ivanov, O. Polezhaeva, A. Shaporev, A. Baranchikov, A. Shcherbakov, A. Usatenko, Synthesis and thermal stability of nanocrystalline ceria sols stabilized by citric and polyacrylic acid. Russ. J. Inorg. Chem., 55(3) (2010) 328-332.
DOI: 10.1134/s0036023610030046
Google Scholar
[3]
A. Shcherbakov, V. Ivanov, N. Zholobak, O. Ivanova, E. Krysanov, A. Baranchikov, Nanocrystaline ceria based materials-perspectives for biomedical application. Biofizika, 56(6) (2011) 995-1015.
DOI: 10.1134/s0006350911060170
Google Scholar
[4]
A. Shcherbakov, N. Zholobak, N. Spivak, V. Ivanov Advances and Prospects of Using Nanocrystalline Ceria in Prolongation of Lifespan and Healthy Aging Russian Journal of Inorganic Chemistry, 60 (13) (2015) 1595–1625.
DOI: 10.1134/s0036023615130057
Google Scholar
[5]
S. Hirst, A. Karakoti, R. Tyler, N. Sriranganathan, S. Seal, C. Reilly Anti-inflammatory properties of cerium oxide nanoparticles. Small. 5(24) (2009) 2848-56.
DOI: 10.1002/smll.200901048
Google Scholar
[6]
J. Niu, K. Wang, P. Kolattukudy Cerium oxide nanoparticles inhibit oxidative stress and nuclear factor-κB activation in H9c2 cardiomyocytes exposed to cigarette smoke extract. J Pharmacol Exp Ther. 338(1) (2011) 53-61.
DOI: 10.1124/jpet.111.179978
Google Scholar
[7]
M. Alaraby, A. Hernández, B. Annangi, E. Demir, J. Bach, L. Rubio, A. Creus, Marcos R. Antioxidant and antigenotoxic properties of CeO2 NPs and cerium sulphate: Studies with Drosophila melanogaster as a promising in vivo model. Nanotoxicology. 9(6) (2015).
DOI: 10.3109/17435390.2014.976284
Google Scholar
[8]
N. Zholobak, V. Ivanov, A. Shcherbakov, A. Shaporev, O. Polezhaeva, A. Baranchikov, N. Spivak, Y. Tretyakov UV-shielding property, photocatalytic activity and photocytotoxicity of ceria colloid solutions. J Photochem Photobiol B 102 (2011) 32–38.
DOI: 10.1016/j.jphotobiol.2010.09.002
Google Scholar
[9]
C. Baker Harnessing cerium oxide nanoparticles to protect normal tissue from radiation damage Transl Cancer Res 2(4) (2013) 343-358.
Google Scholar
[10]
A. Briggs, Corde S., Oktaria S. , Brown R. , Rosenfeld A, Lerch M, Konstantinov K, Tehei M. Cerium oxide nanoparticles: influence of the high-Z component revealed on radioresistant 9L cell survival under X-ray irradiation. Nanomedicine. 9(7) (2013).
DOI: 10.1016/j.nano.2013.02.008
Google Scholar
[11]
D. Minchenko , M. Spivak, R. Herasymenko, V. Ivanov, Y. Tretyakov, O. Minchenko. Effect of cerium dioxide nanoparticles on the expression of selected growth and transcription factors in human astrocytes Mat. -wiss. u. Werkstofftech. 44(2–3) (2013).
DOI: 10.1002/mawe.201300091
Google Scholar
[12]
L. Kong, X. Cai, X. Zhou, L. Wong, A. Karakoti, S. Seal, J. McGinnis Nanoceria extend photoreceptor cell lifespan in tubby mice by modulation of apoptosis/survival signaling pathways. Neurobiol Dis. 42(3) (2011) 514-23.
DOI: 10.1016/j.nbd.2011.03.004
Google Scholar
[13]
C. Baker Cerium oxide nanoparticles protect gastrointestinal epithelium from radiation-induced damage by reduction of reactive oxygen species and upregulation of superoxide dismutase 2. Nanomedicine 6 (2010) 698-705.
DOI: 10.1016/j.nano.2010.01.010
Google Scholar
[14]
A. Albert , Engelhard C., Characteristics of Low-Temperature Plasma Ionization for Ambient Mass Spectrometry Compared to Electrospray Ionization and Atmospheric Pressure Chemical Ionization Anal. Chem., 84 (24) (2012) 10657–10664.
DOI: 10.1021/ac302287x
Google Scholar
[15]
E. Stoffels , Y. Sakiyama, D. Graves Cold atmospheric plasma: charged species and their interactions with cells and tissues IEEE Trans. Plasma Sci. 36 (2008) 1441–57.
DOI: 10.1109/tps.2008.2001084
Google Scholar
[16]
G. Fridman , A. Shereshevsky , M. Jost , A. Brooks , A. Fridman , A. Gutsol , V. Vasilets, G. Friedman Floating electrode dielectric barrier discharge plasma in air promoting apoptotic behavior in melanoma skin cancer cell lines Plasma Chem. Plasma Process. 27 (2007).
DOI: 10.1007/s11090-007-9048-4
Google Scholar
[17]
O. Ivanova, T. Shekunova, V. Ivanov, A. Shcherbakov, A. Popov, G. Davydova, Selezneva I., Kopitsa G., Tretyakov Y., One-stage synthesis of ceria colloid solutions for biomedical use, Doklady Chemistry 437 (2) (2011) 103.
DOI: 10.1134/s0012500811040070
Google Scholar
[18]
M. Evans, Potential for genetic manipulation of mammals, Mol. Biol. Med. 6(6) (1989) 557-65.
Google Scholar
[19]
A. Popov, I. Selezneva, V. Ivanov, P. Grigoriev, Study of CeO2 nanoparticles interactions with biological cells and lipid bilayers J. Biol. Phys. Chem. 14 (2014) 6–10.
DOI: 10.4024/01po14a.jbpc.14.01
Google Scholar
[20]
A. Shashurin, M. Keidar, S. Bronnikov, R. Jurjus, M. Stepp Living tissue under treatment of cold plasma atmospheric jet Appl. Phys. Lett. 93 (2008) 181501.
DOI: 10.1063/1.3020223
Google Scholar
[21]
L. Babenko, N. Zholobak, A. Shcherbakov, S. Voychuk, L. Lazarenko, M. Spivak, Antibacterial activity of cerium colloids against opportunistic microorganisms in vitro, Mikrobiol Z. 74(3) (2012) 54-62.
Google Scholar
[22]
A. Popov, N. Popova, I. Selezneva, A. Akkizov, V. Ivanov Cerium oxide nanoparticles stimulate proliferation of primary mouse embryonic fibroblasts in vitro J. Mater. Sci. Eng. C 68 (2016) 406–413.
DOI: 10.1016/j.msec.2016.05.103
Google Scholar