Cerium Oxide Nanoparticles Protect Primary Embryonic Mouse Fibroblasts from Oxidative Stress Induced by Low-Temperature Argon Plasma Treatment

Article Preview

Abstract:

Cerium oxide (CeO2) nanoparticles are regarded as one of the most promising materials for biomedical applications. Due to their antioxidant activity CeO2 nanoparticles are capable of protecting cells from oxidative stress induced by various physical or chemical factors. In this paper we have investigated the protective effect of CeO2 nanoparticles in the model of oxidative stress induced by low-temperature argon plasma, which is characterized by multiply damaging factors, including different types of radiation (ultraviolet and infrared), free radicals and reactive oxygen species. It was shown that citrate-stabilized cerium oxide nanoparticles protect primary embryonic mouse fibroblasts from the action of plasma, maintaining a high level of cell viability.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

294-300

Citation:

Online since:

January 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] V. Ivanov, A. Shcherbakov, A. Usatenko, Structure-sensitive properties and biomedical applications of nanodispersed cerium dioxide. Russ. Chem. Rev., 78(9) (2009) 855-71.

DOI: 10.1070/rc2009v078n09abeh004058

Google Scholar

[2] V. Ivanov, O. Polezhaeva, A. Shaporev, A. Baranchikov, A. Shcherbakov, A. Usatenko, Synthesis and thermal stability of nanocrystalline ceria sols stabilized by citric and polyacrylic acid. Russ. J. Inorg. Chem., 55(3) (2010) 328-332.

DOI: 10.1134/s0036023610030046

Google Scholar

[3] A. Shcherbakov, V. Ivanov, N. Zholobak, O. Ivanova, E. Krysanov, A. Baranchikov, Nanocrystaline ceria based materials-perspectives for biomedical application. Biofizika, 56(6) (2011) 995-1015.

DOI: 10.1134/s0006350911060170

Google Scholar

[4] A. Shcherbakov, N. Zholobak, N. Spivak, V. Ivanov Advances and Prospects of Using Nanocrystalline Ceria in Prolongation of Lifespan and Healthy Aging Russian Journal of Inorganic Chemistry, 60 (13) (2015) 1595–1625.

DOI: 10.1134/s0036023615130057

Google Scholar

[5] S. Hirst, A. Karakoti, R. Tyler, N. Sriranganathan, S. Seal, C. Reilly Anti-inflammatory properties of cerium oxide nanoparticles. Small. 5(24) (2009) 2848-56.

DOI: 10.1002/smll.200901048

Google Scholar

[6] J. Niu, K. Wang, P. Kolattukudy Cerium oxide nanoparticles inhibit oxidative stress and nuclear factor-κB activation in H9c2 cardiomyocytes exposed to cigarette smoke extract. J Pharmacol Exp Ther. 338(1) (2011) 53-61.

DOI: 10.1124/jpet.111.179978

Google Scholar

[7] M. Alaraby, A. Hernández, B. Annangi, E. Demir, J. Bach, L. Rubio, A. Creus, Marcos R. Antioxidant and antigenotoxic properties of CeO2 NPs and cerium sulphate: Studies with Drosophila melanogaster as a promising in vivo model. Nanotoxicology. 9(6) (2015).

DOI: 10.3109/17435390.2014.976284

Google Scholar

[8] N. Zholobak, V. Ivanov, A. Shcherbakov, A. Shaporev, O. Polezhaeva, A. Baranchikov, N. Spivak, Y. Tretyakov UV-shielding property, photocatalytic activity and photocytotoxicity of ceria colloid solutions. J Photochem Photobiol B 102 (2011) 32–38.

DOI: 10.1016/j.jphotobiol.2010.09.002

Google Scholar

[9] C. Baker Harnessing cerium oxide nanoparticles to protect normal tissue from radiation damage Transl Cancer Res 2(4) (2013) 343-358.

Google Scholar

[10] A. Briggs, Corde S., Oktaria S. , Brown R. , Rosenfeld A, Lerch M, Konstantinov K, Tehei M. Cerium oxide nanoparticles: influence of the high-Z component revealed on radioresistant 9L cell survival under X-ray irradiation. Nanomedicine. 9(7) (2013).

DOI: 10.1016/j.nano.2013.02.008

Google Scholar

[11] D. Minchenko , M. Spivak, R. Herasymenko, V. Ivanov, Y. Tretyakov, O. Minchenko. Effect of cerium dioxide nanoparticles on the expression of selected growth and transcription factors in human astrocytes Mat. -wiss. u. Werkstofftech. 44(2–3) (2013).

DOI: 10.1002/mawe.201300091

Google Scholar

[12] L. Kong, X. Cai, X. Zhou, L. Wong, A. Karakoti, S. Seal, J. McGinnis Nanoceria extend photoreceptor cell lifespan in tubby mice by modulation of apoptosis/survival signaling pathways. Neurobiol Dis. 42(3) (2011) 514-23.

DOI: 10.1016/j.nbd.2011.03.004

Google Scholar

[13] C. Baker Cerium oxide nanoparticles protect gastrointestinal epithelium from radiation-induced damage by reduction of reactive oxygen species and upregulation of superoxide dismutase 2. Nanomedicine 6 (2010) 698-705.

DOI: 10.1016/j.nano.2010.01.010

Google Scholar

[14] A. Albert , Engelhard C., Characteristics of Low-Temperature Plasma Ionization for Ambient Mass Spectrometry Compared to Electrospray Ionization and Atmospheric Pressure Chemical Ionization Anal. Chem., 84 (24) (2012) 10657–10664.

DOI: 10.1021/ac302287x

Google Scholar

[15] E. Stoffels , Y. Sakiyama, D. Graves Cold atmospheric plasma: charged species and their interactions with cells and tissues IEEE Trans. Plasma Sci. 36 (2008) 1441–57.

DOI: 10.1109/tps.2008.2001084

Google Scholar

[16] G. Fridman , A. Shereshevsky , M. Jost , A. Brooks , A. Fridman , A. Gutsol , V. Vasilets, G. Friedman Floating electrode dielectric barrier discharge plasma in air promoting apoptotic behavior in melanoma skin cancer cell lines Plasma Chem. Plasma Process. 27 (2007).

DOI: 10.1007/s11090-007-9048-4

Google Scholar

[17] O. Ivanova, T. Shekunova, V. Ivanov, A. Shcherbakov, A. Popov, G. Davydova, Selezneva I., Kopitsa G., Tretyakov Y., One-stage synthesis of ceria colloid solutions for biomedical use, Doklady Chemistry 437 (2) (2011) 103.

DOI: 10.1134/s0012500811040070

Google Scholar

[18] M. Evans, Potential for genetic manipulation of mammals, Mol. Biol. Med. 6(6) (1989) 557-65.

Google Scholar

[19] A. Popov, I. Selezneva, V. Ivanov, P. Grigoriev, Study of CeO2 nanoparticles interactions with biological cells and lipid bilayers J. Biol. Phys. Chem. 14 (2014) 6–10.

DOI: 10.4024/01po14a.jbpc.14.01

Google Scholar

[20] A. Shashurin, M. Keidar, S. Bronnikov, R. Jurjus, M. Stepp Living tissue under treatment of cold plasma atmospheric jet Appl. Phys. Lett. 93 (2008) 181501.

DOI: 10.1063/1.3020223

Google Scholar

[21] L. Babenko, N. Zholobak, A. Shcherbakov, S. Voychuk, L. Lazarenko, M. Spivak, Antibacterial activity of cerium colloids against opportunistic microorganisms in vitro, Mikrobiol Z. 74(3) (2012) 54-62.

Google Scholar

[22] A. Popov, N. Popova, I. Selezneva, A. Akkizov, V. Ivanov Cerium oxide nanoparticles stimulate proliferation of primary mouse embryonic fibroblasts in vitro J. Mater. Sci. Eng. C 68 (2016) 406–413.

DOI: 10.1016/j.msec.2016.05.103

Google Scholar