[1]
J. Falbe, M. Regitz (Eds. ). Roempp Chemie-Lexikon, George Thieme, Stuttgart, New York, 1990, 9th ed., p. pp.1409-1410.
Google Scholar
[2]
Inrormation on http: /www. who. int/ipcs/features/lead. pdf.
Google Scholar
[3]
Lars Järup, Hazards of heavy metal contamination, British Medical Bulletin, 68 (2003) 167–182.
DOI: 10.1093/bmb/ldg032
Google Scholar
[4]
S. Babel, T.A. Kurniawan, Cr(VI) removal from synthetic wastewater using coconut shell charcoal and commercial activated carbon modified with oxidizing agents and/or chitosan, Chemosphere, 54, 7 (2004) 951–967.
DOI: 10.1016/j.chemosphere.2003.10.001
Google Scholar
[5]
L. Friberg, G.F. Nordberg, B. Vouk, Handbook on the Toxicology of Metals, Elsevier, North-Holland, Biomedical Press, Amsterdam, (1979).
Google Scholar
[6]
M.N. Rashed, Lead removal from contaminated water using mineral adsorbents, The Environmentalist, 21 (2001) 187–195.
Google Scholar
[7]
W.S. Wan Ngah, M.A.K.M. Hanafiah, Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: A review, Bioresource Technology, 99, 10 (2008) 3935 – 3948.
DOI: 10.1016/j.biortech.2007.06.011
Google Scholar
[8]
M.Y. Lee, H.J. Shin, S.H. Lee, J.M. Park, J.W. Yang, Removal of lead in a fixed-bed column packed with activated carbon and crab shell, Sep. Sci. Technol., 33 (1998) 1043–1056.
DOI: 10.1080/01496399808545007
Google Scholar
[9]
B.E. Reed, M. Jamil, B. Thomas, Effect of pH, empty bed contact time and hydraulic loading rate on lead removal by granular activated carbon columns, Water Environ. Res., 68 (1996) 877–882.
DOI: 10.2175/106143096x127875
Google Scholar
[10]
Macias-Garcia, C. Valenzuela-Calahorro, A. Espinosa-Mansilla, A. Bernalte- Garcia, V. Gomez-Serrano, Adsorption of Pb2+ in solution by SО2-treated activated carbon, Carbon, 42 (2004) 1755-1764.
DOI: 10.1016/j.carbon.2004.03.009
Google Scholar
[11]
G. Issabayeva, M.K. Aroua, N.M.N. Sulaiman, Removal of lead from aqueous solutions on palm shell activated carbon, Bioresource Technology, 97, 18 (2006) 2350-2355.
DOI: 10.1016/j.biortech.2005.10.023
Google Scholar
[12]
C. Liu, P.M. Huang, Kinetics of lead adsorption by iron oxides formed under the influence of citrate, Geochim. Cosmochimi. Acta, 67 (2003) 1045–1054.
DOI: 10.1016/s0016-7037(02)01036-0
Google Scholar
[13]
S. Iijima, Helical microtubules of graphitic carbon, Nature, 354 (1991) 56–58.
DOI: 10.1038/354056a0
Google Scholar
[14]
Y.H. Li, S.G. Wang, A.Y. Cao, D. Zhao, X.F. Zhang, C.L. Xu, Z.K. Luan, D.B. Ruan, Adsorption of fluoride from water by amorphous alumina supported on carbon nanotubes, Chem. Phys. Lett., 350 (2001) 412–416.
DOI: 10.1016/s0009-2614(01)01351-3
Google Scholar
[15]
X. Wang, Z. Chen, S. Yang, Application of graphene oxides for the removal of Pb(II) ions from aqueous solutions: Experimental and DFT calculation, Journal of Molecular Liquids, 211 (2015) 957–964.
DOI: 10.1016/j.molliq.2015.08.020
Google Scholar
[16]
M. Machida, T. Mochimaru, H. Tatsumoto, Lead(II) adsorption onto the graphene layer of carbonaceous materials in aqueous solution, Carbon, 44, 13 (2006) 2681–2688.
DOI: 10.1016/j.carbon.2006.04.003
Google Scholar
[17]
M.R. Samarghandi, M. Hadi, S. Moayedi, Askari F. Barjasteh, Two-parameter isotherms of methyl orange sorption by pinecone derived activated carbon, Journal of Environmental Health Science and Engineering, 6, 4, (2009) 285–294.
Google Scholar
[18]
G. Annadurai, R.S. Juang, DJ. Lee, Use of cellulose-based wastes for adsorption of dyes from aqueous solutions, Journal of Hazardous Materials, 92 (2002) 263–274.
DOI: 10.1016/s0304-3894(02)00017-1
Google Scholar
[19]
Z.M. Ni, S.J. Xia, L.G. Wang, F.F. Xing, G.X. Pan, Treatment of methyl orange by calcined layered double hydroxides in aqueous solution: Adsorption property and kinetic studies, Journal of Colloid and Interface Science, 316 (2007) 284–291.
DOI: 10.1016/j.jcis.2007.07.045
Google Scholar