Evaluating Hydrogen Uptake for Two Types of Multi-Wall Carbon Nanotubes from Nitrogen Adsorption/Desorption Data

Article Preview

Abstract:

Two types of multi-wall carbon nanotubes (MWCNT) were studied by low temperature nitrogen adsorption method. Pore size distribution was calculated using non local density functional theory (NLDFT) and Barrett-Joyner-Halenda (BJH) models. The peaks on pore size distribution were attributed to MWCNT with different diameters. Maximum hydrogen uptake by weight was evaluated for both samples and do not exceed 5 % even for the sample with higher specific surface area.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

341-347

Citation:

Online since:

January 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R.H. Baughman, A.A. Zakhidov, W.A. deHeer, Carbon nanotubes –the route towards applications, Science 297 (2002) 787–792.

DOI: 10.1126/science.1060928

Google Scholar

[2] J. Hu, T.W. Odom, C.M. Lieber, Chemistry and physics in one-dimension: synthesis and properties of nanowires and nanotubes, Acc. Chem. Res. 32 (1999) 435–445.

DOI: 10.1021/ar9700365

Google Scholar

[3] A.C. Dillon, K.M. Jones, T.A. Bekkedahl, C.H. Kiang, D.S. Bethune, M.J. Heben, Nature 386 (1997) 377.

DOI: 10.1038/386377a0

Google Scholar

[4] C. Liu, Y.Y. Fan, M. Liu, H.T. Cong, H.M. Cheng, M.S. Dresselhaus, Science 286 (1999) 1127.

Google Scholar

[5] P. Chen, X. Wu, J. Lin, K.L. Tan, Science 285 (1999) 91.

Google Scholar

[6] K.A. Williams, P.C. Eklund, Chem. Phys. Lett. 320 (2000) 352.

Google Scholar

[7] S.M. Lee, Y.H. Lee, Appl. Phys. Lett. 76 (2000) 2877.

Google Scholar

[8] J.R. Cheng, X.H. Yuan, L. Zhao, D.C. Huang, M. Zhao, L. Dai, R. Ding, Carbon 42 (2004) (2019).

Google Scholar

[9] G.E. Ioannatos, X.E. Verykios, Int. J. Hydrogen Energy 35 (2010) 622–628.

Google Scholar

[10] V. Gayathri, N.R. Devi, R. Geetha, Int. J. Hydrogen Energy 35 (2010) 1313–1320.

Google Scholar

[11] Y. Wang, W. Deng, X. Liu, X. Wang, Int. J. Hydrogen Energy 34 (2009) 1437–1443.

Google Scholar

[12] B. Panella, M. Hirscher, S. Roth, Carbon 43 (2005) 2209–2214.

Google Scholar

[13] Y. Li, R.T. Yang, J. Phys. Chem. C 111 (2007) 11086–11094.

Google Scholar

[14] A.L.M. Reddy, S. Ramaprabhu, Int. J. Hydrogen Energy 32 (2007) 4272–4278.

Google Scholar

[15] M. Dresselhaus, K.A. Williams, P.C. Eklund, Hydrogen adsorption in carbon materials, MRS Bulletin 24 (1999) 45–50.

DOI: 10.1557/s0883769400053458

Google Scholar

[16] F. Darkrim, D. Levesque, Monte Carlo simulations of hydrogen adsorption in single-walled carbon nanotubes, J. Chemical Physics 109 (1998) 4981–4984.

DOI: 10.1063/1.477109

Google Scholar

[17] Q. Wang, J.K. Johnson, Molecular simulation of hydrogen adsorption in singlewalled carbon nanotubes and idealized carbon slit pores, J. Chemical Physics 110 (1998) 577–586.

DOI: 10.1063/1.478114

Google Scholar

[18] Q. Wang, J.K. Johnson, Optimization of carbon nanotube arrays for hydrogen adsorption, J. Physical Chemistry B 103 (1999) 4809–4813.

DOI: 10.1021/jp9900032

Google Scholar

[19] S.M. Lee, Y.H. Lee, Hydrogen storage in single-walled carbon nanotubes, Applied Physics Letters 76 (2000) 2877–2879.

DOI: 10.1063/1.126503

Google Scholar

[20] S.M. Lee, K.H. An, Y.H. Lee, G. Seifert, T. Frauenheim, Novel mechanism of hydrogen storage in carbon nanotubes, J. Korean Physical Society 38 (2001) 686–692.

Google Scholar

[21] S.M. Lee, K.H. An, Y.H. Lee, G. Seiffert, T. Frauenheim, A hydrogen storage mechanism in single-walled carbon nanotubes, J. American Chemical Society 123 (2001) 5059–5063.

DOI: 10.1021/ja003751+

Google Scholar

[22] A. Züttel, P. Sudan, P. Mauron, T. Kiyobayashi, C. Emmenenrgger, L. Schlapbach, Hydrogen storage in carbon nanostructures, International J. Hydrogen Energy 27 (2002) 203–212.

DOI: 10.1016/s0360-3199(01)00108-2

Google Scholar

[23] C. Gu, G.H. Gao, Y.X. Yu, Density functional study of the adsorption and separation of hydrogen in single-walled carbon nanotube, International J. Hydrogen Energy 29 (2004) 465–473.

DOI: 10.1016/s0360-3199(03)00131-9

Google Scholar

[24] G. Mpourmpakis, G.E. Froudakis, G.P. Lithoxoos, J. Samios, Effect of curvature and chirality for hydrogen storage in single-walled carbon nanotubes: a combined ab initio and Monte Carlo investigation, J. Chemical Physics 126 (2007), 144704 1-10.

DOI: 10.1063/1.2717170

Google Scholar

[25] F.L. Darkrim, P. Malbrunot, G.P. Tartaglia, Review of hydrogen storage by adsorption in carbon nanotubes, International J. Hydrogen Energy 27 (2002) 193–202.

DOI: 10.1016/s0360-3199(01)00103-3

Google Scholar

[26] V. Meregalli, M. Parrinello, Review of theoretical calculations of hydrogen storage in carbon-based materials, Applied Physics A: Materials Science & Processing 72 (2001) 143–146.

DOI: 10.1007/s003390100789

Google Scholar

[27] Y. Ye, C.C. Ahn, C. Witham, B. Fultz, J. Liu, A.G. Rinzler, D. Colbert, K.A. Smith, R.E. Smalley, Hydrogen adsorption and cohesive energy of single-walled carbon nanotubes, Applied Physics Letters 74 (1999) 2307–2310.

DOI: 10.1063/1.123833

Google Scholar

[28] H.W. Zhu, L.J. Ci, A. Chen, Z.Q. Mao, C.L. Xu, X. Xiao, et al., Hydrogen energy progress XIII, in: Proceedings of the 13th World Hydrogen Energy Conference, International Association for Hydrogen Energy, Beijing, China, 2000, p.560.

Google Scholar

[29] X.B. Wu, P. Chen, J. Lin, K.L. Tan, Hydrogen uptake by carbon nanotubes, International J. Hydrogen Energy 25 (2000) 261–265.

Google Scholar

[30] E.P. Barrett, L.G. Joyner and P.P. Halenda, J. Amer. Chem. Soc., 73 (1951) 373–380.

Google Scholar

[31] L.D. Gelb, K.E. Gubbins, R. Radhakrsihnan, and M. Sliwinska-Bartowiak, Rep. Prog. Phys. 62 (1999) 1573–1659.

Google Scholar

[32] N.A. Seaton, J.P.R.B. Walton and N. Quirke, Carbon 27 (1989) 853.

Google Scholar

[33] A. Vishnyakov, P. Ravikovitch, and A.V. Neimark, Langmuir 16 (2000) 2311.

Google Scholar

[34] John Landers, Gennady Yu. Gor, Alexander V. Neimark, Density functional theory methods for characterization of porous materials (2013) 3-32.

Google Scholar