Improvement of the Mechanical Properties of AZ91D Magnesium Alloys by Deposition of Thin Hydroxyapatite Film

Article Preview

Abstract:

Structural and mechanical behavior of thin hydroxyapatite (HA) films deposited via radio-frequency magnetron sputtering on AZ91D magnesium alloy was investigated. Nanoindentationwas employed to evaluate nanohardness and Young’s modulus of the uncoated and HA-coated AZ91 magnesium alloy. The HA-coated AZ91D magnesium alloy exhibited a higher hardness of 7.1 GPa and a higher modulus of 86 GPa compared withthe uncoated substrate revealing a strong load-bearing capacity.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

355-361

Citation:

Online since:

January 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.V. Dorozhkin, Calcium orthophosphate coatings on magnesium and its biodegradable alloys, Acta Biomaterialia. 10(7) (2014) 2919–2934.

DOI: 10.1016/j.actbio.2014.02.026

Google Scholar

[2] M.A. Surmeneva, R.A. Surmenev, Microstructure characterization and corrosion behaviour of a nano-hydroxyapatite coating deposited on AZ31 magnesium alloy using radio frequency magnetron sputtering, Vacuum. 117 (2015) 60–62.

DOI: 10.1016/j.vacuum.2015.04.004

Google Scholar

[3] M.A. Surmeneva, C. Kleinhans, G. Vacun, P.J. Kluger, V. Schönhaar,M. Müller, S.B. Hein, A. Wittmar, M. Ulbricht, O. Prymak, C. Oehr, R.A. Surmenev, Nano-hydroxyapatite-coated metal-ceramic composite of iron-tricalcium phosphate: Improving the surface wettability, adhesion and proliferation of mesenchymal stem cells in vitro, Colloids and Surfaces B: Biointerfaces. 135 (1) (2015).

DOI: 10.1016/j.colsurfb.2015.07.057

Google Scholar

[4] A. Dey, A.K. Mukhopadhyay, S. Gangadharan, M.K. Sinha, D. Basu, N.R. Bandyopadhyay, Nanoindentation study of microplasma sprayed hydroxyapatite coating, Ceramics International. 35 (6) (2009) 2295–2304.

DOI: 10.1016/j.ceramint.2009.01.002

Google Scholar

[5] A.A. Ivanova, M.A. Surmeneva, A.I. Tyurin, T.S. Pirozhkova, I.A. Shuvarin, O. Prymak, M. Epple, M.V. Chaikind, R.A. Surmenev, Fabrication and physic-mechanical properties of thin magnetron sputter deposited silver-containing hydroxyapatite film, Applied Surface Science. 360 (2016).

DOI: 10.1016/j.apsusc.2015.11.087

Google Scholar

[6] M.A. Surmeneva, T.M. Mukhametkaliyev, R.A. Surmenev, A.I. Tyurin, T.S. Pirozhkova, I.A. Shuvarin, M.S. Syrtanov, Enhancement of the mechanical properties of AZ31 magnesium alloy via nanostructured hydroxyapatite thin films fabricated via radio-frequency magnetron sputtering, Journal of the Mechanical Behavior of Biomedical Materials. 46 (2015).

DOI: 10.1016/j.jmbbm.2015.02.025

Google Scholar

[7] M.A. Surmeneva, R.A. Surmenev, T.M. Mukhametkaliyev, C. Oehr, A.I. Tyurin, T.S. Pirozhkova, I.A. Shuvarin, A.D. Teresov, N.N. Koval, Comparative study of the radio-frequency magnetron sputter deposited cap films fabricated onto acid-etched or pulsed electron beam-treated titanium, Thin Solid Films. 571 (2014).

DOI: 10.1016/j.tsf.2014.10.049

Google Scholar

[8] W.C. Oliver, G.M. Pharr, Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology, J. Mater. Res. 19 (2004) 3–20.

DOI: 10.1557/jmr.2004.19.1.3

Google Scholar

[9] K.A. Gross, S. Saber-Samandari, Nanoindentation reveals mechanical properties within thermally sprayed hydroxyapatite coatings, Surface and Coating Technology. 203 (2009) 1660–1664.

DOI: 10.1016/j.surfcoat.2008.12.025

Google Scholar

[10] Y.I. Golovin, A.I. Tyurin, Dynamics and micromechanisms of the deformation of ionic crystals in pulsed microindentation, Physics of the Solid State, 38(6) (1996) 1000–1003.

Google Scholar

[11] Yu.I. Golovin, A.I. Tyurin, B. Ya. Farber, Time-dependent characteristics of materials and micromechanisms of plastic deformation on a submicron scale by a new pulse indentation technique, Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties. 82(10 SPEC) (2002).

DOI: 10.1080/01418610208235697

Google Scholar

[12] Yu.I. Golovin, V.I. Ivolgin, A.I. Tyurin, V.A. Khonik, Serrated deformation of a Pd40Cu30Ni10P20 bulk amorphous alloy during nanoindentation, Physics of the Solid State. 45(7) (2003) 1267–1271.

DOI: 10.1134/1.1594240

Google Scholar

[13] Yu.I. Golovin, A.I. Tyurin, V.V. Khlebnikov Effect of the conditions of dynamic nanoindentation on the strain-rate sensitivity of hardness for solids with different structures, Technical Physics. The Russian Journal of Applied Physics. 50(4) 2005 479–483.

DOI: 10.1134/1.1901788

Google Scholar

[14] Yu.I. Golovin, A.I. Tyurin, Yu.L. Iunin, Train-rate sensitivity of the hardness of crystalline materials under dynamic nanoindentation, Doklady Physics. 48(9) (2003) 505–508.

DOI: 10.1134/1.1616061

Google Scholar

[15] R. Saha, W. D. Nix, Effects of the substrate on the determination of thin film mechanical properties by nanoindentation, Acta Materialia. 50(1) (2002) 23–38.

DOI: 10.1016/s1359-6454(01)00328-7

Google Scholar

[16] J. Kim, J.S. Kyeong, M.H. Ham, A.M. Minor, D.H. Kim, E.S. Park, Development of Mo‐Ni‐Si‐B metallic glass with high thermal stability and H versus E ratios, Materials & Design. 98 (2016) 31–40.

DOI: 10.1016/j.matdes.2016.02.090

Google Scholar

[17] S.W.K. Knew, K.A. Khor, P. Cheang, Plasma-sprayed hydroxyapatite (HA) coatings with flame-spheroidized feedstock: microstructure and mechanical properties, Biomaterials. 21 (12) (2000) 1223–1234.

DOI: 10.1016/s0142-9612(99)00275-6

Google Scholar