Novel Baddeleyite-Based Zirconia Ceramics for Biomedical Applications

Article Preview

Abstract:

For the first time nanostructured engineering ceramics were prepared from natural zirconia mineral (baddeleyite) with CaO as a tetragonal phase stabilizer. The effect of synthesis conditions on microstructure and mechanical properties of the baddeleyite-based ceramics is reported, furthermore, the effect of calcia content on hardness and fracture toughness is studied. Optimal calcia concentration and synthesis conditions are found, corresponding hardness and fracture toughness values are 10,8 GPa and 13,3 MPa×m1/2. The reported mechanical properties are comparable to those typically reported for yttria-stabilized engineering zirconia ceramics, prepared from chemically synthesized zirconia.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

9-14

Citation:

Online since:

January 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] I.V. Antoniac (ed. ), Handbook of Bioceramics and Biocomposites, Springer, 2015. 1386 p.

Google Scholar

[2] B. Attaf (ed. ), Advances in composite materials for medicine and nanotechnology, In Tech, 2011. 648 р.

Google Scholar

[3] E.P. Ivanova, K. Bazaka, R.J. Crawford, New functional biomaterials for medicine and healthcare, Wood head Pub., 2014. 226 p.

Google Scholar

[4] P.X. Ma (ed. ), Biomaterials and Regenerative Medicine, Cambridge University Press, 2014. 704 p.

Google Scholar

[5] B.J. McEntire, B.S. Bal, M.N. Rahaman, J. Chevalier, G. Pezzotti, Ceramics and ceramic coatings in orthopaedics, Journal of the European Ceramic Society, 35(16) (2015) 4327-4369.

DOI: 10.1016/j.jeurceramsoc.2015.07.034

Google Scholar

[6] K. Bodisova, P. Sajgalik, D. Galusek, P. Svancarek, Two-stage sintering of alumina with submicrometer grain size, J. Am. Ceram. Soc. 90 (2006) 330-332.

Google Scholar

[7] W.C. Oliver, G.M. Pharr, Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology, J. Mater. Res. 19 (2004) 3–20.

DOI: 10.1557/jmr.2004.19.1.3

Google Scholar

[8] C.B. Ponton, R.D. Rawlings, Vickers indenta-tion fracture toughness test Part 1 Review of litera-ture and formulation of standardised indentation toughness equations, Materials Science and Tech-nology. 5 (1989) 865-872.

DOI: 10.1179/mst.1989.5.9.865

Google Scholar

[9] C.B. Ponton, R.D. Rawlings, Vickers indenta-tion fracture toughness test Part 2 Application and critical evaluation of standardised indentation toughness equations, Materials Science and Tech-nology. 5 (1989) 961-976.

DOI: 10.1179/mst.1989.5.10.961

Google Scholar

[10] B.R. Lawn, A.G. Evans, D.B. Marshall, Elastic/plastic indentation damage in ceramics: the me-dian/radial crack system, Journal of the American Ceramic Society. 63 (1980) 574-581.

DOI: 10.1111/j.1151-2916.1980.tb10768.x

Google Scholar

[11] Yu.I. Golovin, A.I. Tyurin, Nondislocation plasticity and its role in the mass transfer and formation of the indentation under dynamic conditions, Physics of the Solid State. 42(10) (2000) 1865-1867.

DOI: 10.1134/1.1318878

Google Scholar

[12] Yu.I. Golovin, A.I. Tyurin, V.I. Ivolgin, V.V. Korenkov, Dynamic characteristics of solids in microvolumes: modern principles, techniques, and results of investigation, Technical Physics. The Russian Journal of Applied Physics. 45(5) (2000).

DOI: 10.1134/1.1259684

Google Scholar

[13] L. Melk, M. Turon-Vinas, J.J. Roa, M.L. Antti, M. Anglada, The influence of unshielded small cracks in the fracture toughness of yttria and of ceria stabilised zirconia, Journal of the European Ceramic Society. 36 (2016) 147-153.

DOI: 10.1016/j.jeurceramsoc.2015.09.017

Google Scholar

[14] A. Nastic, A. Merati, M. Bielawski, M. Bolduc, O. Fakolujo, M. Nganbe, Instrumented and Vickers Indentation for the Characterization of Stiffness, Hardness and Toughness of Zirconia Toughened Al2O3 and SiC Armor, Journal of Materials Science & Technology. 31 (2015).

DOI: 10.1016/j.jmst.2015.06.005

Google Scholar

[15] H. Miyazaki, Y.I. Yoshizawa, Correlation of the indentation fracture resistance measured using high-resolution optics and the fracture toughness obtained by the single edge-notched beam (SEPB) method for typical structural ceramics with various microstructures, Ceramics International. 42 (2016).

DOI: 10.1016/j.ceramint.2016.01.116

Google Scholar

[16] V.S. Stubican, S.P. Ray, Phase Equilibria and Ordering in the System ZrO2-CaO, J. Am. Ceram. Soc. 60 (1977) 534-537.

DOI: 10.1111/j.1151-2916.1977.tb14100.x

Google Scholar

[17] K. Wang, C.H. Li, Y.H. Gao, X.G. Lu, W.Z. Ding, Thermodynamic reassessment of ZrO2-CaO system, J. Am. Ceram. Soc. 92 (2009) 1098-1104.

Google Scholar

[18] S. Serena, M.A. de Aza S. Sainz, A. Caballero, Thermodynamic assessment of the system ZrO2–CaO–MgO using new experimental results: Calculation of the isoplethal section MgO×CaO-ZrO2, J. Europ. Ceram. Soc. 25 (2005) 681-694.

DOI: 10.1016/s0955-2219(04)00077-9

Google Scholar

[19] Y. Yin, B. Argent, Phase diagrams and thermodynamics of the systems ZrO2-CaO and ZrO2-MgO, J. Phase Equilib. 14 (1993) 439-450.

DOI: 10.1007/bf02671962

Google Scholar