Ce1-хGdхOy Nanoparticles Stimulate Proliferation of Dental Pulp Stem Cells In Vitro

Article Preview

Abstract:

One of the main reasons for limiting the widespread clinical use of mesenchymal stem cells (MSCs) is a low speed of their proliferation in vitro. In this regard, the search for new safe and effective growth stimulants is an urgent task. In this study, we investigated the effect of nanocrystalline cerium oxide doped with gadolinium (Ce1-х Gdх Oy), on the morphofunctional characteristics and proliferative activity of MSCs derived from dental pulp. It was shown that the introduction of Ce1-х Gdх Oy nanoparticles into the culture of dental MSCs provides the activation of proliferation of the cells in a dose-dependent manner. High concentrations of Ce1-х Gdх Oy nanoparticles inhibit the proliferation of the cells; however, this does not lead to further development of apoptosis and cell death. The obtained results indicate that the nanocrystalline cerium oxide can be considered as a basis for the development of highly efficient and low-cost supplements for culturing MSCs.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

26-31

Citation:

Online since:

January 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Zhang F, Ren T, Wu J Niu J. Small concentrations of TGF-β1 promote proliferation of bone marrow-derived mesenchymal stem cells via activation of Wnt/β-catenin pathway. Indian J Exp Biol. 53(8) (2015) 508-13.

Google Scholar

[2] Muller F. L., at all, Trends in oxidative aging theories. Free Radic. Biol. Med. 43(2007) 477.

Google Scholar

[3] Valle-Prieto A., P. A. Conget, Human mesenchymal stem cells efficiently manage oxidative stress, Stem Cells and Development, 19(12) (2010) 1885–1893.

DOI: 10.1089/scd.2010.0093

Google Scholar

[4] Li T. -S., E. Marb´an, Physiological levels of reactive oxygen species are required to maintain genomic stability in stem cells, Stem Cells, 28(7) (2010) 1178–1185.

DOI: 10.1002/stem.438

Google Scholar

[5] Higuchi M., G. J. Dusting, H. Peshavariya et al., Differentiation of human adipose-derived stem cells into fat involves reactive oxygen species and forkhead box o1 mediated upregulation of antioxidant enzymes, Stem Cells and Development, 22(6) (2013).

DOI: 10.1089/scd.2012.0306

Google Scholar

[6] Perales-Clemente E., C. D. Folmes, A. Terzic, Metabolic regulation of redox status in stem cells, Antioxidants & Redox Signaling, 21(11) (2014) 1648–1659.

DOI: 10.1089/ars.2014.6000

Google Scholar

[7] Mathieu J., W. Zhou, Y. Xing et al., Hypoxia-inducible factors have distinct and stage-specific roles during reprogramming of human cells to pluripotency, Cell Stem Cell, 14 (5) (2014) 592–605.

DOI: 10.1016/j.stem.2014.02.012

Google Scholar

[8] Walkey C, Das S, Seal S, Erlichman J, Heckman K, Ghibelli L, Traversa E, McGinnis JF, Self WT. Catalytic Properties and Biomedical Applications of Cerium Oxide Nanoparticles. Environ Sci Nano. 1; 2(1) (2015) 33-53.

DOI: 10.1039/c4en00138a

Google Scholar

[9] Lee SS, Song W, Cho M, Puppala HL, Nguyen P, Zhu H, Segatori L, Colvin VL. Antioxidant properties of cerium oxide nanocrystals as a function of nanocrystal diameter and surface coating. ACS Nano.  26; 7(11) (2013) 9693-703.

DOI: 10.1021/nn4026806

Google Scholar

[10] Baker C.H. Cerium oxide nanoparticles protect gastrointestinal epithelium from radiation-induced damage by reduction of reactive oxygen species and upregulation of superoxide dismutase 2. Nanomedicine 6 (2010) 698-705.

DOI: 10.1016/j.nano.2010.01.010

Google Scholar

[11] Dowding M., Talib Dosani, Amit Kumar, Sudipta Seal and William T. Self Cerium oxide nanoparticles scavenge nitric oxide radical (˙NO) Chem. Commun., 48 (2012) 4896-4898.

DOI: 10.1039/c2cc30485f

Google Scholar

[12] Shcherbakov A.B., N.M. Zholobak, A.E. Baranchikov, A.V. Ryabova, V.K. Ivanov. Cerium fluoride nanoparticles protect cells against oxidative stress Mater Sci Eng C Mater Biol Appl.  50 (2015) 151-9.

DOI: 10.1016/j.msec.2015.01.094

Google Scholar

[13] Ying Xue, Qingfen Luan, Dan Yang, Xin Yao , and Kebin Zhou  J. Direct Evidence for Hydroxyl Radical Scavenging Activity of Cerium Oxide Nanoparticles, Phys. Chem. C, 115 (11) (2011) 4433–4438.

DOI: 10.1021/jp109819u

Google Scholar

[14] Ivanov V.K., Shcherbakov A.B., Usatenko A.V. Structure-sensitive properties and biomedical applications of nanodispersed cerium dioxide / Russ. Chem. Rev. 78 (2009) 855–871.

DOI: 10.1070/rc2009v078n09abeh004058

Google Scholar

[15] Zholobak N.M., Ivanov V.K., Shcherbakov A.B., Shaporev A.S., Polezhaeva O.S., Baranchikov A. Ye., Spivak N. Ya., Tretyakov Yu.D. UV-shielding property, photocatalytic activity and photocytotoxicity of ceria colloid solutions / J. Photochem. Photobiol. B. 102 (2011).

DOI: 10.1016/j.jphotobiol.2010.09.002

Google Scholar

[16] Chen J., Patil S., Seal S., McGinnis J.F. Rare earth nanoparticles prevent retinal degeneration induced by intracellular peroxides / Nat. Nanotechnol. 1 (2006) 142–150.

DOI: 10.1038/nnano.2006.91

Google Scholar

[17] Baranchikov A. E., Polezhaeva O. S., Ivanov V. K., Tretyakov Y. D. Lattice expansion and oxygen nonstoichiometry of nanocrystalline ceria /Cryst. Eng. Comm. 12 (2010) 3531–3533.

DOI: 10.1039/c0ce00245c

Google Scholar

[18] Heckert EG, Karakoti AS, Seal S, Self WT The role of cerium redox state in the SOD mimetic activity of nanoceria. Biomaterials 29 (2008) 2705–2709.

DOI: 10.1016/j.biomaterials.2008.03.014

Google Scholar

[19] Talib P., Janet M. Dowding, Sanjay Singh, Brian Wasserman, Eric Heckert, Ajay S. Karakoti, Jessica E. S. King, Sudipta Seal, William T. Self Nanoceria exhibit redox state-dependent catalase mimetic activity Chem Commun (Camb). 46(16) (2010).

DOI: 10.1039/b922024k

Google Scholar

[20] Can Xu and Xiaogang Qu Cerium oxide nanoparticle: a remarkably versatile rare earth nanomaterial for biological applications NPG Asia Materials 6 (2014), e90.

DOI: 10.1038/am.2013.88

Google Scholar

[21] Asati A., Santra S., Kaittanis C. et al. Oxidase like activity of polymer-coated cerium oxide nanoparticles / Angewandte Chemie. 121(13) (2009) 2344–2348.

DOI: 10.1002/ange.200805279

Google Scholar

[22] Karakoti A. S., Singh S., Kumar A. et al. PEGylated nanoceria as radical scavenger with tunable redox chemistry / J. Am. Chem. Soc. 131 (40) (2009) 14144–14145.

DOI: 10.1021/ja9051087

Google Scholar

[23] Tsai Y.Y., Oca_Cossio J., Agering K. et al. Novel synthesis of cerium oxide nanoparticles for free radical scavenging / Nanomed. 2 (3) (2007) 325-332.

DOI: 10.2217/17435889.2.3.325

Google Scholar

[24] Babu S., Schulte A., Seal S. Defects and symmetry influence on visible emission of Eu doped nanoceria / Appl. Phys. Lett. 92 (2008) 1231-12.

DOI: 10.1063/1.2904627

Google Scholar

[25] Gil D.O., E.A. Dolgopolov, TA Semenov, AA Gardeners, OS Ivanov VK Ivanov YD Tretyakov. Photoprotective properties of solid solutions based on cerium oxide Nanosystems: Physics, Chemistry, Mathematics. 4(1) (2013) 78-82.

Google Scholar

[26] Gasimova G.A., Ivanova O.S., Baranchikov AI Shcherbakov AB, Ivanov VK, Tretyakov YD Synthesis of aqueous sols of nanocrystalline cerium dioxide doped with gadolinium Nanosystems: physics, chemistry, mathematics. 2(3) (2011) 113-120.

Google Scholar

[27] Popov A., Popova N., Selezneva I., Akkizov A., Ivanov V. Cerium oxide nanoparticles stimulate proliferation of primary mouse embryonic fibroblasts in vitro J. Mater. Sci. Eng. C 68 (2016) 406–413.

DOI: 10.1016/j.msec.2016.05.103

Google Scholar