Magnetic Nanopartices as Carriers for Immunoassays

Article Preview

Abstract:

Magnetic nanoparticles (MNP) are efficient molecular carriers for affine molecules. MNP complexes with antibodies can be used for the selective concentration and highly sensitive detection of various compounds. In this paper, development steps of the enzyme immunoassay using MNP are considered in details. Simple method of MNP synthesis and production of conjugates of antibodies with the aggregated MNP using physical sorption is presented. Simple, yet effective, formats of enzyme immunoassay are given. Using aflatoxin B1 detection as an example, possibility of decreasing detection limit up to 2 pg/mL, with a considerable decrease in the assay time, and performing immune interaction in the media with high organic content is shown.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

54-62

Citation:

Online since:

January 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W. Wei, W. Zhaohui, Y. Taekyung, J. Changzhong, K. Woo-Sik, Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications, Sci. Tech. Adv. Mater., 16 (2015) 023501.

Google Scholar

[2] M. Colombo, S. Carregal-Romero, M.F. Casula, L. Gutierrez, M.P. Morales, I.B. Bohm, J.T. Heverhagen, D. Prosperi, W.J. Parak, Biological applications of magnetic nanoparticles, Chem. Soc. Rev., 41 (2012) 4306-4334.

DOI: 10.1039/c2cs15337h

Google Scholar

[3] K. Aguilar-Arteaga, J.A. Rodriguez, E. Barrado, Magnetic solids in analytical chemistry: a review, Anal. Chim. Acta, 674 (2010) 157-165.

DOI: 10.1016/j.aca.2010.06.043

Google Scholar

[4] J. He, M. Huang, D. Wang, Z. Zhang, G. Li, Magnetic separation techniques in sample preparation for biological analysis: a review, J. Pharm. Biomed. Anal., 101 (2014) 84-101.

DOI: 10.1016/j.jpba.2014.04.017

Google Scholar

[5] J.S. Miller, Drillon M., Magnetism: Molecules to Materials V, Wiley-VCH, Weinheim, (2005).

Google Scholar

[6] K.M. Krishnan, A.B. Pakhomov, Y. Bao, P. Blomqvist, Y. Chun, M. Gonzales, K. Griffin, X. Ji, B.K. Roberts, Nanomagnetism and spin electronics: materials, microstructure and novel properties, J. Mater. Sci., 41 (2006) 793-815.

DOI: 10.1007/s10853-006-6564-1

Google Scholar

[7] T. Neuberger, B. Schöpf, H. Hofmann, M. Hofmann, B. von Rechenberg, Superparamagnetic nanoparticles for biomedical applications: Possibilities and limitations of a new drug delivery system, J. Magn. Magn. Mater., 293 (2005) 483-496.

DOI: 10.1016/j.jmmm.2005.01.064

Google Scholar

[8] A.E. Urusov, A.V. Zherdev, B.B. Dzantiev, Use of gold nanoparticle-labeled secondary antibodies to improve the sensitivity of an immunochromatographic assay for aflatoxin B1, Microchim. Acta, 181 (2014) 1939-(1946).

DOI: 10.1007/s00604-014-1288-4

Google Scholar

[9] A.E. Urusov, A.V. Petrakova, M.V. Vozniak, A.V. Zherdev, B.B. Dzantiev, Rapid immunoenzyme assay of aflatoxin B1 using magnetic nanoparticles, Sensors, 14 (2014) 21843-21857.

DOI: 10.3390/s141121843

Google Scholar

[10] S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L.V. Elst, R.N. Muller, Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications, Chem. Rev., 108 (2008).

DOI: 10.1021/cr068445e

Google Scholar

[11] J. Ederveen, A Practical Approach to Biological Assay Validation, Progress, Project Management and Engineering, the Netherlands, Hoofddorp, (2010).

Google Scholar

[12] R. Gao, J. Li, S. Han, B. Wen, T. Zhang, H. Miao, Q. Zhang, Magnetisation behaviour of mixtures of ferrofluids and paramagnetic fluids with same particle volume fractions, J. Exp. Nanosci., 7 (2011) 282-297.

DOI: 10.1080/17458080.2010.524668

Google Scholar

[13] T. Hyeon, Chemical synthesis of magnetic nanoparticles, Chem. Commun., (2003) 927-934.

Google Scholar

[14] J. -M. Montenegro, V. Grazu, A. Sukhanova, S. Agarwal, J.M. de la Fuente, I. Nabiev, A. Greiner, W.J. Parak, Controlled antibody/(bio-) conjugation of inorganic nanoparticles for targeted delivery, Adv. Drug. Deliv. Rev., 65 (2013) 677-688.

DOI: 10.1016/j.addr.2012.12.003

Google Scholar

[15] L. Zhang, R. He, H. -C. Gu, Oleic acid coating on the monodisperse magnetite nanoparticles, Appl. Surf. Sci., 253 (2006) 2611-2617.

DOI: 10.1016/j.apsusc.2006.05.023

Google Scholar

[16] J. Xie, J. Huang, X. Li, S. Sun, X. Chen, Iron oxide nanoparticle platform for biomedical applications, Curr. Med. Chem., 16 (2009) 1278-1294.

DOI: 10.2174/092986709787846604

Google Scholar

[17] A.V. Petrakova, A.E. Urusov, A.V. Zherdev, B.B. Dzantiev, Comparative study of strategies for antibody immobilization onto the surface of magnetic particles in pseudo-homogeneous enzyme immunoassay of aflatoxin B1, Mosc. Univ. Chem. Bull., 71 (2016).

DOI: 10.3103/s0027131416010119

Google Scholar

[18] I. Safarik, Safariková, M., Forsythe, S.J., Magnetic techniques for the isolation and purification of proteins and peptides, Biomagn. Res. Technol., 2 (2004) 1-17.

Google Scholar

[19] M. Franzreb, Siemann-Herzberg, M., Hobley, T.J., Thomas O.R., Protein purification using magnetic adsorbent particles, Appl. Microbiol. Biotechnol., (2006) 505-516.

DOI: 10.1007/s00253-006-0344-3

Google Scholar

[20] I. Safarik, Safariková, M., Magnetically modified microbial cells: A new type of magnetic adsorbents, China Particuology, (2007) 19-25.

DOI: 10.1016/j.cpart.2006.12.003

Google Scholar

[21] A.V. Petrakova, A.E. Urusov, A.V. Zherdev, B.B. Dzantiev, Magnetic ELISA of aflatoxin B1 - pre-concentration without elution, Anal. Methods, 7 (2015) 10177-10184.

DOI: 10.1039/c5ay02386f

Google Scholar

[22] J.M. Ryan, Extraction Efficiency Studies for Mycotoxins in Naturally Contaminated Commodities, Mycotoxin Prevention and Control in Agriculture, American Chemical Society, 2009, pp.223-236.

DOI: 10.1021/bk-2009-1031.ch015

Google Scholar