Cu2O Water Dispersions and Nano-Cu2O/Fabric Composite: Preparation by Pulsed Laser Ablation, Characterization and Antibacterial Properties

Article Preview

Abstract:

Colloidal solutions of copper (I) oxide, Cu2O, were obtained by pulsed laser ablation of metallic copper target in distilled water using fundamental harmonic of Nd:YAG laser (1064 nm, 7 ns, 20 Hz). Nanocolloids obtained were applied to cotton fabric. Nanoparticles composition and structure were studied by UV-Vis and Raman spectroscopy, transmission and scanning electron microscopy, and XRD. Antibacterial activity of Cu2O nanoparticles on cotton fabric to E.coli bacteria was demonstrated in comparison with zinc oxide nanoparticles.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

75-81

Citation:

Online since:

January 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Morales, L. Sanchez, F. Martin J.R. Ramos-Barrado and M. Sanchez, Nanostructured CuO thin film electrodes prepared by spray pyrolysis: a simple method for enhancing the electrochemical performance of CuO in lithium cells, Electrochim. Acta. 49 (2004).

DOI: 10.1016/j.electacta.2004.05.012

Google Scholar

[2] M. Milanese, G. Colangelo, A. Cretì, M. Lomascolo, F. Iacobazzi and A. de Risi, Optical absorption measurements of oxide nanoparticles for application as nanofluid in direct absorption solar power systems – Part I: Water-based nanofluids behavior, Solar Energy Mat. Solar Cel. 147 (2016).

DOI: 10.1016/j.solmat.2015.12.027

Google Scholar

[3] K. Zhou, R. Wang, B. Xu and Y. Li, Synthesis, characterization and catalytic properties of CuO nanocrystals with various shapes, Nanotechnology 17 (2006) 3939-3943.

DOI: 10.1088/0957-4484/17/15/055

Google Scholar

[4] M. Premanathan, K. Karthikeyan, K. Jeyasubramanian and G. Manivannan, Selective toxicity of ZnO nanoparticles toward Gram-positive bacteria and cancer cells by apoptosis through lipid peroxidation, Nanomedicine: Nanotechnol. Biol. Med. 7 (2011).

DOI: 10.1016/j.nano.2010.10.001

Google Scholar

[5] V. Svetlichnyi, A. Shabalina, I. Lapin, D. Goncharova and A. Nemoykina, ZnO nanoparticles obtained by pulsed laser ablation and theircomposite with cotton fabric: Preparation and study of antibacterialactivity, Appl. Surf. Sci. 372 (2016).

DOI: 10.1016/j.apsusc.2016.03.043

Google Scholar

[6] S.H. Stelzig, C. Menneking, M.S. Hoffmann, K. Eisele, S. Barcikowski, M. Klapper and K. Müllen, Compatibilization of laser generated antibacterial Ag- and Cu-nanoparticles for perfluorinated implant materials, European Polymer J. 47 (2011).

DOI: 10.1016/j.eurpolymj.2010.10.018

Google Scholar

[7] A.J. Huh and Y.J. Kwon, Nanoantibiotics,: A new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era, J. Controlled Release 156 (2011) 128-145.

DOI: 10.1016/j.jconrel.2011.07.002

Google Scholar

[8] H. Zeng, X. -W. Du, S.C. Singh, S.A. Kulinich, S. Yang, J. He and W. Cai, Nanomaterials via Laser Ablation/Irradiation in Liquid: A Review, Adv. Funct. Mater. 22 (2012) 1333-1353.

DOI: 10.1002/adfm.201102295

Google Scholar

[9] I.N. Lapin and V.A. Svetlichnyi, Features of the synthesis of nanocolloid oxides by laser ablation of bulk metal targets in solutions, Proc. SPIE. 9810 (2015) 98100T1-7.

DOI: 10.1117/12.2224699

Google Scholar

[10] D. Goncharova, I. Lapin and V. Svetlichnyi, Synthesis of CdS Nanoparticles by Laser Ablation of Metallic Cadmium Target in Presence Different Precursors, Adv. Mater. Res. 1085 (2015) 182-186.

DOI: 10.4028/www.scientific.net/amr.1085.182

Google Scholar

[11] T. Sasaki, Y. Shimizu and N. Koshizaki, Preparation of metal oxide-based nanomaterials using nanosecond pulsed laser ablation in liquids, J. Photochem. Photobiol. A. 182 (2006) 335-341.

DOI: 10.1016/j.jphotochem.2006.05.031

Google Scholar

[12] V.A. Svetlichnyi and I.N. Lapin, Structure and properties of nanoparticles fabricated by laser ablation of Zn metal targets in water and ethanol, Rus. Phys. J. 56 (2013) P. 581-587.

DOI: 10.1007/s11182-013-0071-z

Google Scholar

[13] B.A. Gizhevskii, Yu.P. Sukhorukov, A.S. Moskvin, N.N. Loshkareva, E.V. Mostovshchikova, A.E. Ermakov, E.A. Kozlov, M.A. Uimin and V.S. Gaviko, Anomalies in the Optical Properties of Nanocrystalline Copper Oxides CuO and Cu2O near the Fundamental Absorption Edge, J. Experimen. Theor. Phys. 102 (2006).

DOI: 10.1134/s1063776106020105

Google Scholar

[14] L. Debbichi, M.C. Marco de Lucas, J.F. Pierson and P. Krüger, Vibrational Properties of CuO and Cu4O3 from First-Principles Calculations, and Raman and Infrared Spectroscopy, J. Phys. Chem. C 116 (2012) 10232-10237.

DOI: 10.1021/jp303096m

Google Scholar

[15] A.C. Curtis, D.G. Duff, P.P. Edwards, D.A. Jefferson, B.F.G. Johnson, A.I. Kirkland and A.S. Wallace, Preparation and Structural Characterization of an Unprotected Copper Sol, J. Phys. Chem. 92 (1988) 2270-2275.

DOI: 10.1021/j100319a035

Google Scholar

[16] P. Liu, H. Wang, X. Li, M. Rui and H. Zeng, Localized surface plasmon resonance of Cu nanoparticles by laser ablation in liquid media, RSC Adv. 5 (2015) 79738-79745.

DOI: 10.1039/c5ra14933a

Google Scholar

[17] J.M.J. Santillán, F.A. Videla, M.B. F, van Raap, D.C. Schinca and L.B. Scaffardi, Size dependent Cu dielectric function for plasmon spectroscopy: Characterization of colloidal suspension generated by fs laser ablation, J. Appl. Phys. 112 (2012).

DOI: 10.1063/1.4751328

Google Scholar

[18] A. Nath and A. Khare, Size induced structural modifications in copper oxide nanoparticles synthesized via laser ablation in liquids, J. Appl. Phys. 110 (2011) 043111.

DOI: 10.1063/1.3626463

Google Scholar