[1]
J. Morales, L. Sanchez, F. Martin J.R. Ramos-Barrado and M. Sanchez, Nanostructured CuO thin film electrodes prepared by spray pyrolysis: a simple method for enhancing the electrochemical performance of CuO in lithium cells, Electrochim. Acta. 49 (2004).
DOI: 10.1016/j.electacta.2004.05.012
Google Scholar
[2]
M. Milanese, G. Colangelo, A. Cretì, M. Lomascolo, F. Iacobazzi and A. de Risi, Optical absorption measurements of oxide nanoparticles for application as nanofluid in direct absorption solar power systems – Part I: Water-based nanofluids behavior, Solar Energy Mat. Solar Cel. 147 (2016).
DOI: 10.1016/j.solmat.2015.12.027
Google Scholar
[3]
K. Zhou, R. Wang, B. Xu and Y. Li, Synthesis, characterization and catalytic properties of CuO nanocrystals with various shapes, Nanotechnology 17 (2006) 3939-3943.
DOI: 10.1088/0957-4484/17/15/055
Google Scholar
[4]
M. Premanathan, K. Karthikeyan, K. Jeyasubramanian and G. Manivannan, Selective toxicity of ZnO nanoparticles toward Gram-positive bacteria and cancer cells by apoptosis through lipid peroxidation, Nanomedicine: Nanotechnol. Biol. Med. 7 (2011).
DOI: 10.1016/j.nano.2010.10.001
Google Scholar
[5]
V. Svetlichnyi, A. Shabalina, I. Lapin, D. Goncharova and A. Nemoykina, ZnO nanoparticles obtained by pulsed laser ablation and theircomposite with cotton fabric: Preparation and study of antibacterialactivity, Appl. Surf. Sci. 372 (2016).
DOI: 10.1016/j.apsusc.2016.03.043
Google Scholar
[6]
S.H. Stelzig, C. Menneking, M.S. Hoffmann, K. Eisele, S. Barcikowski, M. Klapper and K. Müllen, Compatibilization of laser generated antibacterial Ag- and Cu-nanoparticles for perfluorinated implant materials, European Polymer J. 47 (2011).
DOI: 10.1016/j.eurpolymj.2010.10.018
Google Scholar
[7]
A.J. Huh and Y.J. Kwon, Nanoantibiotics,: A new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era, J. Controlled Release 156 (2011) 128-145.
DOI: 10.1016/j.jconrel.2011.07.002
Google Scholar
[8]
H. Zeng, X. -W. Du, S.C. Singh, S.A. Kulinich, S. Yang, J. He and W. Cai, Nanomaterials via Laser Ablation/Irradiation in Liquid: A Review, Adv. Funct. Mater. 22 (2012) 1333-1353.
DOI: 10.1002/adfm.201102295
Google Scholar
[9]
I.N. Lapin and V.A. Svetlichnyi, Features of the synthesis of nanocolloid oxides by laser ablation of bulk metal targets in solutions, Proc. SPIE. 9810 (2015) 98100T1-7.
DOI: 10.1117/12.2224699
Google Scholar
[10]
D. Goncharova, I. Lapin and V. Svetlichnyi, Synthesis of CdS Nanoparticles by Laser Ablation of Metallic Cadmium Target in Presence Different Precursors, Adv. Mater. Res. 1085 (2015) 182-186.
DOI: 10.4028/www.scientific.net/amr.1085.182
Google Scholar
[11]
T. Sasaki, Y. Shimizu and N. Koshizaki, Preparation of metal oxide-based nanomaterials using nanosecond pulsed laser ablation in liquids, J. Photochem. Photobiol. A. 182 (2006) 335-341.
DOI: 10.1016/j.jphotochem.2006.05.031
Google Scholar
[12]
V.A. Svetlichnyi and I.N. Lapin, Structure and properties of nanoparticles fabricated by laser ablation of Zn metal targets in water and ethanol, Rus. Phys. J. 56 (2013) P. 581-587.
DOI: 10.1007/s11182-013-0071-z
Google Scholar
[13]
B.A. Gizhevskii, Yu.P. Sukhorukov, A.S. Moskvin, N.N. Loshkareva, E.V. Mostovshchikova, A.E. Ermakov, E.A. Kozlov, M.A. Uimin and V.S. Gaviko, Anomalies in the Optical Properties of Nanocrystalline Copper Oxides CuO and Cu2O near the Fundamental Absorption Edge, J. Experimen. Theor. Phys. 102 (2006).
DOI: 10.1134/s1063776106020105
Google Scholar
[14]
L. Debbichi, M.C. Marco de Lucas, J.F. Pierson and P. Krüger, Vibrational Properties of CuO and Cu4O3 from First-Principles Calculations, and Raman and Infrared Spectroscopy, J. Phys. Chem. C 116 (2012) 10232-10237.
DOI: 10.1021/jp303096m
Google Scholar
[15]
A.C. Curtis, D.G. Duff, P.P. Edwards, D.A. Jefferson, B.F.G. Johnson, A.I. Kirkland and A.S. Wallace, Preparation and Structural Characterization of an Unprotected Copper Sol, J. Phys. Chem. 92 (1988) 2270-2275.
DOI: 10.1021/j100319a035
Google Scholar
[16]
P. Liu, H. Wang, X. Li, M. Rui and H. Zeng, Localized surface plasmon resonance of Cu nanoparticles by laser ablation in liquid media, RSC Adv. 5 (2015) 79738-79745.
DOI: 10.1039/c5ra14933a
Google Scholar
[17]
J.M.J. Santillán, F.A. Videla, M.B. F, van Raap, D.C. Schinca and L.B. Scaffardi, Size dependent Cu dielectric function for plasmon spectroscopy: Characterization of colloidal suspension generated by fs laser ablation, J. Appl. Phys. 112 (2012).
DOI: 10.1063/1.4751328
Google Scholar
[18]
A. Nath and A. Khare, Size induced structural modifications in copper oxide nanoparticles synthesized via laser ablation in liquids, J. Appl. Phys. 110 (2011) 043111.
DOI: 10.1063/1.3626463
Google Scholar