Influence of Blend on the Conductivity in Poly(Ethyl Methacrylate)/Poly(Vinyl Acetate) Based Polymer Electrolytes

Article Preview

Abstract:

The polymer blend electrolytes composed of poly (ethyl methacrylate)(PEMA) and Poly (vinyl acetate)(PVAc) as host polymer and lithium perchlorate (LiClO4) as a salt are synthesized by solvent casting technique. The polymer membranes with different wt% of PEMA and PVAc are subjected to AC impedance analysis for the investigation of ionic conductivity. The maximum ionic conductivity of 3.541 X 10- 5Scm- 1 at 303K is reported for PEMA/PVAC (70/30wt%) –LiClO4 (8wt%) polymer blend electrolyte system.The complexation has been confirmed by XRD and FTIR techniques. The glass transition temperature (Tg) of the blend polymer electrolytes has been obtained from DSC measurements. The SEM micrographs show the surface morphology of the prepared samples. The electrochemical stability of the sample exhibiting high conductivity has been carried out using linear sweep voltammetry (LSV) and cyclic voltammetry (CV) measurements. The potential window has been found to be-2.5 to +2.5 V. The lithium transference number evaluated using chronoamperometry technique results in a value of 0.90. The dielectric behavior of the solid polymer blend electrolytes has been analyzed as a function of frequency and temperature. The dc conductivity values obtained from the conductance spectra match the ac impedance results. The photoluminescence spectra that contain information about the local free volume of the prepared samples justify the conductivity results. The two and three dimensional images of the maximum ionic conducting sample exhibit numerous micropores.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

202-216

Citation:

Online since:

August 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P.G. Bruce, Solid State Electrochemistry, Cambridge University Press, Cambridge, (1995).

Google Scholar

[2] F.M. Gray, PolymerElectrolytes, RSCMonographs, The Royal Society of Chemistry, London, (1997).

Google Scholar

[3] N. Choi, J. Park, New polymer electrolytes based on PVC/PMMA blend for plastic lithium-ion batteries, Electrochim. Acta 46 (2001)1453-1459.

DOI: 10.1016/s0013-4686(00)00739-8

Google Scholar

[4] D.E. Fenton J.M. Parker P.V. Wright, Complexes of alkali metal ions with poly(ethylene oxide), Polymer 14 (1973) 589.

DOI: 10.1016/0032-3861(73)90146-8

Google Scholar

[5] Young-G Lee, Jung-Ki Park, Electrochemical characteristics of polymer electrolytes based on P(VdF-co-HFP)/PMMA ionomer blend for PLIB, Journal of Powersources 97-98 (2001) 616-620.

DOI: 10.1016/s0378-7753(01)00575-4

Google Scholar

[6] J.M. Tarascon,M. Armand, review article Issues and challenges facing rechargeable lithium batteries, Nature 414 (2001) 359-367.

DOI: 10.1038/35104644

Google Scholar

[7] A.S. Arico, P.G. Bruce, B. Scrosati, J.M. Tarascon, W.V. Schalkwijk, Nanostructured materials for advanced energy conversion and storage devices, Nat. Matter 4 (2005) 366-377.

DOI: 10.1038/nmat1368

Google Scholar

[8] D.J. Bannister G.R. Davier, I.M. Ward, J.E. MCIntyre, Ionic conductivities for poly(ethylene oxide) complexes with lithium salts of monobasic and dibasic acids and blends of poly(ethylene oxide) with lithium salts of anionic polymers, Polymer 25 (1984).

DOI: 10.1016/0032-3861(84)90378-1

Google Scholar

[9] D.W. Kim J.K. Park H.W. Rhee, Conductivity and thermal studies of solid polymer electrolytes prepared by blending poly(ethylene oxide), poly(oligo[oxyethylene]oxysebacoyl) and lithium perchlorate, Solid State Ionics 83 (1996) 49-56.

DOI: 10.1016/0167-2738(95)00238-3

Google Scholar

[10] C. Robitaille, J. Prud'homme, Thermal and mechanical properties of a poly(ethylene oxide-b-isoprene-b-ethylene oxide) block polymer complexed with sodium thiocyanate, Macromolecules 16 (1983) 665-673.

DOI: 10.1021/ma00238a033

Google Scholar

[11] J.E. Weston, B.C.H. Steele, Effects of inert fillers on the mechanical and electrochemical properties of lithium salt-poly(ethylene oxide) polymer electrolytes, Solid State Ionics 7 (1982) 75-79.

DOI: 10.1016/0167-2738(82)90072-8

Google Scholar

[12] A. Subramani, N.T. KalyanaSundaram, A. RohiniPriya, R. Gangadharan, T. Vasudevan, Preparation of a microporous gel polymer electrolyte with a novel preferential polymer dissolution process for Li-ion batteries, J. Appl. Polym. Sci. 98 (2005).

DOI: 10.1002/app.22114

Google Scholar

[13] Z.L. Wang, Z.Y. Tang, A novel polymer electrolyte based on PMAML/PVDF-HFP blend, ElectrochimActa 49 (2004 1063-1068.

DOI: 10.1016/j.electacta.2003.10.017

Google Scholar

[14] A. Rincon, I.C. McNeill, Thermal degradation of poly(methyl methacrylate)-poly-4-bromostyrene blends and methyl methacrylate-4-bromostyrene copolymers, Polym. Degrad. Stab. 40 (1993) 125-135.

DOI: 10.1016/0141-3910(93)90202-t

Google Scholar

[15] Sung HY, Wang YY, Wan CC, Preparation and Characterization of Poly (vinyl chloride‐co‐vinyl acetate) ‐based Gel Electrolytes for Li‐Ion Batteries, J ElectroChem. Soc. 145 (1998) 1207-1211.

DOI: 10.1149/1.1838440

Google Scholar

[16] S. Ramesh, A.H. Yahaya, A.K. Arof, Dielectric behaviour of PVC-based polymer electrolytes, Solid State Ionics 152-153 (2002) 291-294.

DOI: 10.1016/s0167-2738(02)00311-9

Google Scholar

[17] B. K. Choi Y.W. Kim, H. K. Shin, Ionic conduction in PEO-PAN blend polymer electrolytes, ElectrochimicaActa 45 (2000)1371-1374.

DOI: 10.1016/s0013-4686(99)00345-x

Google Scholar

[18] R. Subadevi, M. Sivakumar , S. Rajendran, Hung-Chun Wu , Nae-Lih Wu, Development and characterizations of PVdF-PEMA gel polymer electrolytes, Ionics 18 (2012) 283-289.

DOI: 10.1007/s11581-011-0629-0

Google Scholar

[19] S. Rajendran, M. RameshPrabhu, Effect of different plasticizer on structural and electrical properties of PEMA-based polymer electrolytes, J. Appl. Electrochem 40 (2010) 327-332.

DOI: 10.1007/s10800-009-9979-y

Google Scholar

[20] E. Quatarone, P. Mustarelli, A. Magistris, PEO-based composite polymer electrolytes, Solid State Ionics 110 (1998) 1-14.

Google Scholar

[21] K. Tsunemi, H. Ohno, E. Tsuchida, A mechanism of ionic conduction of poly (vinylidene fluoride)-lithium perchlorate hybrid films, ElectrochimActa 28 (1983) 833-837.

DOI: 10.1016/0013-4686(83)85155-x

Google Scholar

[22] Mac Callum JA, Vincent CA(1987) polymer electrolyte reviews-I, Elsevier Applied Science, London.

Google Scholar

[23] R. Baskaran, S. SelvasekaraPandian, N. Kuwata, J. Kawamura,T. Hatton, ac impedance, DSC and FT-IR investigations on (x) PVAc–(1−x) PVdF blends with LiClO4, Materials Chemistry & Physics 98 (2006) 55-61.

DOI: 10.1016/j.matchemphys.2005.08.063

Google Scholar

[24] N.S. Choi, Y.G. Lee, J.K. Park, J.M. Ko, Preparation and Electrochemical characteristics of the Plasticized Polymer electrolyte based on P(VdF-co-HFP)/PVAc blend, Electrochimica Acta 46(2001)1581-1586.

DOI: 10.1016/s0013-4686(00)00756-8

Google Scholar

[25] C.H. Kim, K.H. Lee, W.S. Kim, J.K. Park, D.Y. Sung, Ion conductivities and interfacial characteristics of the plasticized polymer electrolytes based on poly(methyl methacrylate-co-Li maleate), J. Power Sources 94 (2001) 163-168.

DOI: 10.1016/s0378-7753(00)00579-6

Google Scholar

[26] J.B. Wagner, C. J. Wagner, Chem. Rev., 26 (1957) 1597.

Google Scholar

[27] Adachi K, Urakawa O, Dielectric study of concentration fluctuations in concentrated polymer solutions J. Non-cryst. Solids, 307-310 (2002) 667-670.

DOI: 10.1016/s0022-3093(02)01527-2

Google Scholar

[28] J. Perez and O. Manero, Mechanism of ionic conductivity for zwitterionic polymers, Polymer 1998, 39(26) 6969-6975.

DOI: 10.1016/s0032-3861(98)00091-3

Google Scholar

[29] Jonscher AK, Dielectric relaxation in solids, Chelsea Dielectric, London, 1983, 284.

Google Scholar

[30] JonscherAK, Analysis of the alternating current properties of ionic conductors,J. Mater. Sci., 13 (1978) 553-562.

Google Scholar

[31] K.A. Mauritz, Dielectric relaxation studies of ion motions in electrolyte-containing perfluorosulfonate ionomers. 4. Long-range ion transport, Macromolecules, 22 (1989) 4483-4488.

DOI: 10.1021/ma00202a018

Google Scholar

[32] U. S. Park, Y.J. Hong, S. M. Oh, Fluorescence spectroscopy for local viscosity measurements in polyacrylonitrile (pan)-based polymer gel electrolytes, Electrochim. Acta 41 (1996) 849-855.

DOI: 10.1016/0013-4686(95)00372-x

Google Scholar