[1]
L. Wang, T. Sasaki, Titanium Oxide Nanosheets: Graphene Analogues with Versatile Functionalities Chem. Rev. 114 (2014) 9455.
DOI: 10.1021/cr400627u
Google Scholar
[2]
D.F. Rohlfing, A. Zaleska, T. Bein, Three-Dimensional Titanium Dioxide Nanomaterials, Chem. Rev. 114, 19 (2014) 9487.
DOI: 10.1021/cr500201c
Google Scholar
[3]
F. Liu, H. He, Structure−Activity Relationship of Iron Titanate Catalysts in the Selective Catalytic Reduction of NOx with NH3, J. Phys. Chem.C. 114 (2010) 16929.
DOI: 10.1021/jp912163k
Google Scholar
[4]
N. G Park, J. Van de Lagemaat, A.J. Frank, Comparison of Dye-Sensitized Rutile- and Anatase-Based TiO2 Solar Cells, J. Phys. Chem. B. 104 (2010) 8989.
DOI: 10.1021/jp994365l
Google Scholar
[5]
C.A.C. Sequeira, P.J. Joseph, J.M.B.F. Diniz, Some physical properties of the TiO2 semiconductor electrode, Solid. State. Ionics 26 (1988) 197.
DOI: 10.1016/0167-2738(88)90227-5
Google Scholar
[6]
A. Fujishima, T. Rao, Tryk A. D, Titanium dioxide photocatalysis, J. Photochem. Photobiol. C: Photochem. 1, 1 (2000) 1-21.
Google Scholar
[7]
B. Reddy, G. Reddy, K. Rao, I. Ganesh and J. Ferreira, Characterization and photocatalytic activity of TiO2-MxOy (MxOy=SiO2, Al2O3, and ZrO2) mixed oxides synthesized by microwave-induced solution combustion technique, Mater. Sci. 44, 18 (2009).
DOI: 10.1007/s10853-009-3358-2
Google Scholar
[8]
S. Yang, W. Zhua, J. Wang, Z. Chen, Catalytic wet air oxidation of phenol over CeO2-TiO2 catalyst in the batch reactor and the packed-bed reactor, J. Hazard. Mater. 153 (2008) 1248.
DOI: 10.1016/j.jhazmat.2007.09.084
Google Scholar
[9]
J. Bandara, C. P. K. Udawatta, C.S.K. Rajapakse, Highly stable CuO incorporated TiO2 catalyst for photocatalytic hydrogen production from H2O, Photochem. & Photobiol. Sci. 4 (2005) 857.
DOI: 10.1039/b507816d
Google Scholar
[10]
K.M. Glassford, J.R. Chelikowsky, Structural and electronic properties of titanium dioxide, Phys. Rev. B. 46 (1992) 1284.
DOI: 10.1103/physrevb.46.1284
Google Scholar
[11]
F. P. Koffyberg, F.A. Benko, A photoelectrochemical determination of the position of the conduction and valence band edges of p‐type CuO, J. Appl. Phys. 53 (1982) 1173.
DOI: 10.1063/1.330567
Google Scholar
[12]
G.K. Mor, O.K. Varghese, R.H.T. Wilke, S. Sharma, K. Shankar, T.J. Latempa, K.S. Choi, C.A. Grimes C. A, p-Type Cu−Ti−O Nanotube Arrays and Their Use in Self-Biased Heterojunction Photoelectrochemical Diodes for Hydrogen Generation, Nano Lett. 8 (2008).
DOI: 10.1021/nl8022252
Google Scholar
[13]
Y. Luo, D. Li, Experimental study of nanometer TiO2 for use as an adsorbent for SO2 removal, Dev. Chem. Eng. Min. Process. 10, 3-4 (2002) 443-457.
DOI: 10.1002/apj.5500100414
Google Scholar
[14]
S. Deng, Z. Lia, J. Huang, G. Yua, Preparation, characterization and application of a Ce-Ti oxide adsorbent for enhanced removal of arsenate from water, J. Hazard Mater. 179 (2010) 1014.
DOI: 10.1016/j.jhazmat.2010.03.106
Google Scholar
[15]
Y. Xie, C. Yuan, X. Li, Photosensitized and photocatalyzed degradation of azo dye using Lnn+-TiO2 sol in aqueous solution under visible light irradiation, Mater. Sci. Eng. B. 117 (2005) 325.
DOI: 10.1016/j.mseb.2004.12.073
Google Scholar
[16]
Scherrer, P. Estimation of the size and internal structure of colloidal particles by means of Rontgen rays, Nachr. Ges. Wiss. Gˆttingen. 26 (1918) 96-100.
Google Scholar
[17]
M. Sahu M, P. Biswas, Single-step processing of copper-doped titania nanomaterials in a flame aerosol reactor, Nanoscale Research Lett. 6 (2011) 441.
DOI: 10.1186/1556-276x-6-441
Google Scholar
[18]
T. Mishra, J. Hait, M. Gunjan, B. Mahato, R.K. Jana R. K, Surfactant mediated synthesis of spherical binary oxides photocatalytic with enhanced activity in visible light, Colloid. Intrf. Sci. 327 (2008) 377.
DOI: 10.1016/j.jcis.2008.08.040
Google Scholar
[19]
W. Li, Y. Wang, H. Lin, S. Ismat Shah, C.P. Haung , D.J. Doren , S.A. Rayko, J.G. Chen M.A. Barteau, Band gap tailoring of Nd3+-doped TiO2 nanoparticles, Appl. Phy. Lett. 83 (2003) 4143.
DOI: 10.1063/1.1627962
Google Scholar
[20]
F. Cai-Mei, T. Qi, W. Yun – Fang, H. Xiao-gang, L. Zhen-hai, S. Yan-ping, Effect of Er3+ dopant on microstructure andphotocatalytic property of nano-TiO2, Trans. Nonfer. Met. Soc. Chin. 17 (2007) 716.
Google Scholar
[21]
L.P. Li, J.J. Liu, Y. G Su, G.S. Li, X.B. Chen, X.Q. Qiu, T.J. Yan T. Surface doping for photocatalytic purposes: relations between particle size, surface modifications, and photoactivity of SnO(2): Zn2+ nanocrystals, J, Nanotechnol. 20 (2009).
DOI: 10.1088/0957-4484/20/15/155706
Google Scholar
[22]
G. Liu, C.H. Sun, X.X. Yan, L. Cheng, Z.G. Chen, X.W. Wang, L.Z. Wang , S.C. Smith G.Q. Lu, H.M. Cheng, Iodine doped anatase TiO2 photocatalyst with ultra-long visible light response: correlation between geometric/electronic structures and mechanisms, J Mater Chem. 19 (2009).
DOI: 10.1039/b820816f
Google Scholar
[23]
A.K. Chakraborty, R. Md. Masudur, H. Md. Emran, K.M. Sobahan, Preparation of WO3/TiO2/In2O3 composite structures and their enhanced photocatalytic activity under visible light irradiation, Reac. Kinet. Mech. Cat. 111 (2014) 371.
DOI: 10.1007/s11144-013-0623-9
Google Scholar
[24]
A.W. Xu, Y. Gao, H.Q. Liu, The preparation, characterization, and their photocatalytic activities of rare-earth-doped TiO2 nanoparticles, J. Catal. 207 (2002) 151.
DOI: 10.1006/jcat.2002.3539
Google Scholar