Preparation, Characterization and Photo Activity of Copper Oxide Doped Titania Nano Catalyst

Article Preview

Abstract:

Copper oxide doped titania nanocatalysts preparation was carried out by combustion synthesis method. The precursor compounds for the preparation of these nanocatalysts were titanium iso propoxide, glycine, copper nitrate and strontium nitrate. The prepared catalysts were characterized by Energy dispersive X-ray analysis (EDX), X-ray diffraction (XRD), Scanning electron microscopy (SEM), BET Surface area measurement and Infrared spectroscopy (FTIR). Total acidity of the prepared catalysts were determined by temperature programmed desorption of ammonia (TPD-NH3). There was no characteristic peak of copper oxide in the XRD pattern. The photo activity of these prepared catalysts was examined for the degradation of methylene blue dye, which is a common environmental pollutant. These catalysts can be used to degrade the dye from water and thus helps the aquatic life.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

217-223

Citation:

Online since:

August 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Wang, T. Sasaki, Titanium Oxide Nanosheets: Graphene Analogues with Versatile Functionalities Chem. Rev. 114 (2014) 9455.

DOI: 10.1021/cr400627u

Google Scholar

[2] D.F. Rohlfing, A. Zaleska, T. Bein, Three-Dimensional Titanium Dioxide Nanomaterials, Chem. Rev. 114, 19 (2014) 9487.

DOI: 10.1021/cr500201c

Google Scholar

[3] F. Liu, H. He, Structure−Activity Relationship of Iron Titanate Catalysts in the Selective Catalytic Reduction of NOx with NH3, J. Phys. Chem.C. 114 (2010) 16929.

DOI: 10.1021/jp912163k

Google Scholar

[4] N. G Park, J. Van de Lagemaat, A.J. Frank, Comparison of Dye-Sensitized Rutile- and Anatase-Based TiO2 Solar Cells, J. Phys. Chem. B. 104 (2010) 8989.

DOI: 10.1021/jp994365l

Google Scholar

[5] C.A.C. Sequeira, P.J. Joseph, J.M.B.F. Diniz, Some physical properties of the TiO2 semiconductor electrode, Solid. State. Ionics 26 (1988) 197.

DOI: 10.1016/0167-2738(88)90227-5

Google Scholar

[6] A. Fujishima, T. Rao, Tryk A. D, Titanium dioxide photocatalysis, J. Photochem. Photobiol. C: Photochem. 1, 1 (2000) 1-21.

Google Scholar

[7] B. Reddy, G. Reddy, K. Rao, I. Ganesh and J. Ferreira, Characterization and photocatalytic activity of TiO2-MxOy (MxOy=SiO2, Al2O3, and ZrO2) mixed oxides synthesized by microwave-induced solution combustion technique, Mater. Sci. 44, 18 (2009).

DOI: 10.1007/s10853-009-3358-2

Google Scholar

[8] S. Yang, W. Zhua, J. Wang, Z. Chen, Catalytic wet air oxidation of phenol over CeO2-TiO2 catalyst in the batch reactor and the packed-bed reactor, J. Hazard. Mater. 153 (2008) 1248.

DOI: 10.1016/j.jhazmat.2007.09.084

Google Scholar

[9] J. Bandara, C. P. K. Udawatta, C.S.K. Rajapakse, Highly stable CuO incorporated TiO2 catalyst for photocatalytic hydrogen production from H2O, Photochem. & Photobiol. Sci. 4 (2005) 857.

DOI: 10.1039/b507816d

Google Scholar

[10] K.M. Glassford, J.R. Chelikowsky, Structural and electronic properties of titanium dioxide, Phys. Rev. B. 46 (1992) 1284.

DOI: 10.1103/physrevb.46.1284

Google Scholar

[11] F. P. Koffyberg, F.A. Benko, A photoelectrochemical determination of the position of the conduction and valence band edges of p‐type CuO, J. Appl. Phys. 53 (1982) 1173.

DOI: 10.1063/1.330567

Google Scholar

[12] G.K. Mor, O.K. Varghese, R.H.T. Wilke, S. Sharma, K. Shankar, T.J. Latempa, K.S. Choi, C.A. Grimes C. A, p-Type Cu−Ti−O Nanotube Arrays and Their Use in Self-Biased Heterojunction Photoelectrochemical Diodes for Hydrogen Generation, Nano Lett. 8 (2008).

DOI: 10.1021/nl8022252

Google Scholar

[13] Y. Luo, D. Li, Experimental study of nanometer TiO2 for use as an adsorbent for SO2 removal, Dev. Chem. Eng. Min. Process. 10, 3-4 (2002) 443-457.

DOI: 10.1002/apj.5500100414

Google Scholar

[14] S. Deng, Z. Lia, J. Huang, G. Yua, Preparation, characterization and application of a Ce-Ti oxide adsorbent for enhanced removal of arsenate from water, J. Hazard Mater. 179 (2010) 1014.

DOI: 10.1016/j.jhazmat.2010.03.106

Google Scholar

[15] Y. Xie, C. Yuan, X. Li, Photosensitized and photocatalyzed degradation of azo dye using Lnn+-TiO2 sol in aqueous solution under visible light irradiation, Mater. Sci. Eng. B. 117 (2005) 325.

DOI: 10.1016/j.mseb.2004.12.073

Google Scholar

[16] Scherrer, P. Estimation of the size and internal structure of colloidal particles by means of Rontgen rays, Nachr. Ges. Wiss. Gˆttingen. 26 (1918) 96-100.

Google Scholar

[17] M. Sahu M, P. Biswas, Single-step processing of copper-doped titania nanomaterials in a flame aerosol reactor, Nanoscale Research Lett. 6 (2011) 441.

DOI: 10.1186/1556-276x-6-441

Google Scholar

[18] T. Mishra, J. Hait, M. Gunjan, B. Mahato, R.K. Jana R. K, Surfactant mediated synthesis of spherical binary oxides photocatalytic with enhanced activity in visible light, Colloid. Intrf. Sci. 327 (2008) 377.

DOI: 10.1016/j.jcis.2008.08.040

Google Scholar

[19] W. Li, Y. Wang, H. Lin, S. Ismat Shah, C.P. Haung , D.J. Doren , S.A. Rayko, J.G. Chen M.A. Barteau, Band gap tailoring of Nd3+-doped TiO2 nanoparticles, Appl. Phy. Lett. 83 (2003) 4143.

DOI: 10.1063/1.1627962

Google Scholar

[20] F. Cai-Mei, T. Qi, W. Yun – Fang, H. Xiao-gang, L. Zhen-hai, S. Yan-ping, Effect of Er3+ dopant on microstructure andphotocatalytic property of nano-TiO2, Trans. Nonfer. Met. Soc. Chin. 17 (2007) 716.

Google Scholar

[21] L.P. Li, J.J. Liu, Y. G Su, G.S. Li, X.B. Chen, X.Q. Qiu, T.J. Yan T. Surface doping for photocatalytic purposes: relations between particle size, surface modifications, and photoactivity of SnO(2): Zn2+ nanocrystals, J, Nanotechnol. 20 (2009).

DOI: 10.1088/0957-4484/20/15/155706

Google Scholar

[22] G. Liu, C.H. Sun, X.X. Yan, L. Cheng, Z.G. Chen, X.W. Wang, L.Z. Wang , S.C. Smith G.Q. Lu, H.M. Cheng, Iodine doped anatase TiO2 photocatalyst with ultra-long visible light response: correlation between geometric/electronic structures and mechanisms, J Mater Chem. 19 (2009).

DOI: 10.1039/b820816f

Google Scholar

[23] A.K. Chakraborty, R. Md. Masudur, H. Md. Emran, K.M. Sobahan, Preparation of WO3/TiO2/In2O3 composite structures and their enhanced photocatalytic activity under visible light irradiation, Reac. Kinet. Mech. Cat. 111 (2014) 371.

DOI: 10.1007/s11144-013-0623-9

Google Scholar

[24] A.W. Xu, Y. Gao, H.Q. Liu, The preparation, characterization, and their photocatalytic activities of rare-earth-doped TiO2 nanoparticles, J. Catal. 207 (2002) 151.

DOI: 10.1006/jcat.2002.3539

Google Scholar