A Comparative Study on Sintering Behaviour of Low and High Density Pellets of Ni-YSZ by Electrochemical Impedance Spectroscopy

Article Preview

Abstract:

In this study, a systematic investigation on in-situ sintering behavior of Ni-YSZ (50: 50wt. %) pellets of density of 4.2 (low density) and 4.9 g/cm3 (high density) in ambient and oxygen environment by impedance spectroscopy is presented. X-ray diffraction indicated the formation of cubic phases of NiO and YSZ. The low density pellet sintered for 16 h showed low content of monoclinic phase when compared to high density pellet. The microstructure of the high density pellet revealed finer and homogenous distribution of Ni in YSZ matrix due to longer sintering duration when compared with the low density pellet. AC impedance spectra were recorded for both low and high density pellets during sintering in ambient and oxygen environment in the temperature range 873-1173 K. The results indicate that for both the pellets, the impedance values decreased when sintering temperature increased from 873 to 1173 K in both ambient and oxygen environment. However, the impedance was low while sintering in oxygen atmosphere than in ambient. Besides these observation, impedance of the high density pellet was much lower than that of the low density pellet at all sintering temperature in both ambient and oxygen atmosphere. While the impedance decreased with increasing sintering temperature, the capacitance increased slowly in both the ambient and oxygen atmosphere. The change in the impedance behavior due to grain interior and grain boundaries is explained in relation with the microstructural changes that occur during sintering in different environments.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

237-245

Citation:

Online since:

August 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. ShriPrakash, S. SenthilKumar, S.T. Aruna , J. Renew. Sustainable Energy Rev., 36 (2014) 149.

Google Scholar

[2] T. Setoguchi, K. Okamoto, K. Eguchi, and H. Arai, J. Electrochem. Soc., 139 (1992) 2875.

Google Scholar

[3] S. P. Jiang and S. P. S. Badwal, J. Electrochem. Soc., 144 (1997) 3777.

Google Scholar

[4] Jingxiang Xu, Yuji Higuchi, Nobuki Ozawa, Kazuhisa Sato, Toshiyuki Hashida, and Momoji Kubo, ECS Trans., 57 (2013) 2459.

Google Scholar

[5] Ewa Drozdz, Jan Wyrwa, Mieczysław Rękas, Ionics 19 (2013) 1733.

Google Scholar

[6] Ji Haeng Yu, Gun Woo Park, Shiwoo Lee, Sang Kuk Woo, J. Power Sources 163 (2007) 926.

Google Scholar

[7] Robert Mehrabian, Haydn N.G. Wadley, J. Metals (1985) 51.

Google Scholar

[8] Komarenko P, Clark DE, J. Am. Ceram. Soc., 83 (1993) 351.

Google Scholar

[9] Challis R. E., Tebbutt J. S., Holmes A. K., J. Ph D: Applied Physics 31 (1998) 3481.

Google Scholar

[10] Boccaccini AR, Kern H, Liebald R, Beier W, Janczak-Rusch, J. Am. Ceram. Soc., 48 (1998) 45.

Google Scholar

[11] N.Q. Minh, T. Takahashi, Science and Technology of Ceramic Fuel Cells, second ed., New York, (1995).

Google Scholar

[12] S.C. Singhal, K. Kendall, High Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications, second ed., U. K, (2003).

Google Scholar

[13] R.N. Basu, Materials for Solid Oxide Fuel Cells in Recent Trends in Fuel Cell Science and Technology, second ed., USA, (2006).

Google Scholar

[14] Bin Liu, Yun Zhang, Baofeng Tu, Yonglai Dong, Mojie Cheng, J. Power Sources 165 (2007) 114.

Google Scholar

[15] Masaru Kubota, Takeou Okanishi, Hiroki Muroyama, Toshiaki Matsui, Koichi Eguchi, J. Electrochem. Soc, 162(4) (2015) 380.

Google Scholar

[16] Hibiki Itoh, Tohru Yamamoto, Masashi Mon, Teruhisa Horita, Natsuko Sakai, Harumi Yokokawa, Masayuki Dokiya, J. Electrochem. Soc., 144 (2) (1997) 1.

Google Scholar

[17] Jingbo Liu, Viola Birss, Josephine Hill, J. AlChE., 56 (2010) 6.

Google Scholar

[18] San Ping Jiang, J. Mater. Sci., 38 (2003) 3775.

Google Scholar

[19] Madhumita Mukhopadhyay, Jayanta Mukhopadhyay, Abhijit Das Sharma, Rajendra N. Basu, Mat Sci Eng B-SOLID, 163 (2009) 120.

Google Scholar

[20] Takehisa Fukui, Kenji Murata, Satoshi Ohara, Hiroya Abe, Makio Naito, Kiyoshi Nogi, J. Power Sources, 125 (2004) 17.

Google Scholar

[21] Swadesh K. Pratihar, A. Das Sharma, R.N. Basu, H.S. Maiti, J. Power sources, 129 (2004) 138.

Google Scholar

[22] Hideto Koide, Yoshiyuki Someya, Toshihiko Yoshida, Toshio Maruyama, J. Solid State Ionics, 132 (2000) 253.

Google Scholar

[23] Yong Jun Leng, Siew Hwa Chan, Khiam Aik Khor, San Ping Jiang, Philip Cheang, J. Power Sources, 117 (2003) 26.

Google Scholar

[24] T. Priyatham, Ranjit Bauri, J. Materials Characterization, 61 (2010) 54.

Google Scholar

[25] S. P. Jiang, S. H. Chan, J. Materials Science and Technology, 20 (2004) 1109.

Google Scholar

[26] S.T. Aruna, M. Muthuraman, K.C. Patil, J. Solid State Ionics, 111 (1998) 45.

Google Scholar

[27] Wolfgang G. Bessler, Marcel Vogler, Heike Stormer, Dagmar Gerthsen, Annika Utz, Andre Weber, Ellen Ivers Tiffee, J. Phys. Chem., 12(2010), 13888.

Google Scholar

[28] Soren Primdahl, Bent F. Sorensen, Mogens Mogensen, J. Am. Ceram. Soc., 83 (2000) 489.

Google Scholar

[29] P. Duran, J. Tartaj, F. Capel, C. Moure, J. Eur. Ceram. Soc., 23 (2003) 2125.

Google Scholar