[1]
T. M. Allen, P. R. Cullis, Liposomal drug delivery systems: from concept to clinical applications, Adv. Drug Deliv. Rev. 65 (2013) 36-48.
DOI: 10.1016/j.addr.2012.09.037
Google Scholar
[2]
E. Busseron, Y. Ruff, E. Moulin, N. Giuseppone, Supramolecular self-assemblies as functional nanomaterials, Nanoscale 5 (2013) 7098-7140.
DOI: 10.1039/c3nr02176a
Google Scholar
[3]
M. Antonietti, S. Forster, Vesicles and liposomes: a self-assembly principle beyond lipids, Adv. Materials 15 (2003) 1323-1333.
DOI: 10.1002/adma.200300010
Google Scholar
[4]
T. Liu, E. Diemann, H. Li, A. Dress, A. Müller, Self-assembly in aqueous solution of wheel-shaped mo154 oxide clusters into vesicles, Nature 426 (2003), 59-62.
DOI: 10.1038/nature02036
Google Scholar
[5]
J. Hartgerink, J. Granja, R. Milligan, M. Ghadiri, Self-assembling peptide nanotubes, J. Am. Chem. Soc. 118 (1996) 43-50.
DOI: 10.1021/ja953070s
Google Scholar
[6]
K. Matsuoka, T. Yoshimura, M. Bong, C. Honda, K. Endo, Nanocage aggregates composed of bilayer sheets, Langmuir 24 (2008) 5676-5678.
DOI: 10.1021/la800618v
Google Scholar
[7]
Z. Cheng, D. Elias, N. Kamat, E. Johnston, A. Poloukhtine, V. Popik, D. Hammer, A. Tsourkas, Improved tumor targeting of polymer-based nanovesicles using polymer–lipid blends, Bioconjugate Chem. 22 (2011) 2021-(2029).
DOI: 10.1021/bc200214g
Google Scholar
[8]
S. Podaralla, R. Averineni, M. Alqahtani, O. Perumal, Synthesis of novel biodegradable methoxy poly(ethylene glycol)–zein micelles for effective delivery of curcumin, Mol. Pharmaceutics. 9 (2012) 2778-2786.
DOI: 10.1021/mp2006455
Google Scholar
[9]
Y. Liu, Z. Sun, P. Chen, Z. Huang, Y. Gao, L. Shi, Y. Zhao, Y. Chen, Y. Li, Glycopeptide nanoconjugates based on multilayer self-assembly as an antitumor vaccine, Bioconjugate Chem. 26, (2015) 1439–1442.
DOI: 10.1021/acs.bioconjchem.5b00150
Google Scholar
[10]
H. Mansur, A. Mansur, A. Soriano-Araújo, Z. Lobato, S. de Carvalho, F. Leite, Mater. Sci. Eng. C. Mater. Biol. Appl. 52 (2015) 61-71.
Google Scholar
[11]
S. Ke, J-Y. Wang, J, Pei, p-Conjugated aromatics based on truxene: synthesis, self-assembly and applications, Chem. Rec. 15 (2015) 52-72.
DOI: 10.1002/tcr.201402071
Google Scholar
[12]
M. Souto, C. Rovira, I. Ratera, J. Veciana, Ttf-ptm dyads: from switched molecular self-assembly in solution to radical conductors in solid state. Cryst. Eng. Comm. 19 (2017) 197-206.
DOI: 10.1039/c6ce01660j
Google Scholar
[13]
H. Zhao, X. Guo, S. He, X. Zeng, X, Zhou, C. Zhang, J. Hu, X. Wu, Z. Xing, L. Chug, Y. He, Q. Chen, Complex self-assembly of pyrimido[4, 5-d]pyrimidine nucleoside supramolecular structures. Nature Commun. 5 (2014) doi: 10. 1038/ncomms4108.
DOI: 10.1038/ncomms4108
Google Scholar
[14]
R. Chakraborty, P. Mukherjee, P. Stang, Supramolecular coordination: self-assembly of finite two and three-dimensional ensembles, Chem. Rev. 111 (2011) 6810-6918.
DOI: 10.1021/cr200077m
Google Scholar
[15]
C. Krishnamohan Sharma, S. Griffin, R. Rogers, Simple routes to supramolecular squares with ligand corners: 1: 1Ag1: pyrimidine cationic tetranuclear assemblies. Chem. Commun. (1998) 215-216.
DOI: 10.1039/a706021a
Google Scholar
[16]
S. Datta, S. Samanta, S. Bhattacharya, Induction of supramolecular chirality in the self-assemblies of lipophilic pyrimidine derivatives by choice of the amino acid based chiral spacer. Chem. Eur. J. 19 (2013) 11364-11373.
DOI: 10.1002/chem.201300605
Google Scholar
[17]
T. Girogi, S. Lena, P. Mariani, M. Cremonini, S. Masiero, S. Pieraccini, J. Rabe, P. Samori, G. Spada, G. Gottarelli, Supramolecular helices via self-assemblies of 8-oxoguanosines, J. Am. Chem. Soc. 125 (2003) 14741-14749.
DOI: 10.1021/ja0364827
Google Scholar
[18]
B. Cafferty, I. Gallego, M. Chen, K. Farley, R. Eritja, N. Hud, Efficient self-assembly in water of long noncovalent polymers by nucleobase analogues, J. Am. Chem. Soc. 135 (2013) 2447-2450.
DOI: 10.1021/ja312155v
Google Scholar
[19]
A. Herland, P. Bjork, K. Nilsson, J. Olsson, P. Asberg, P. Konradsson, P. Hammarstrom, O. Inganas, Electroactive luminescent self-assembled bio-organic nanowires: integration of semiconducting oligoelectrolytes within amyloidogenic proteins, Adv. Mater. 17 (2005).
DOI: 10.1002/adma.200500183
Google Scholar
[20]
S. Kalra, G. Jena, K. Tikoo, A. Mukhopadhyay, Preferential inhibition of xanthine oxidase by 2-amino-6-hydroxy-8-mercaptopurine and 2-amino-6-purine-thiol, BMC Biochemistry 8: 8 (2007) DOI: 10. 1186/1471-2091-8-8.
DOI: 10.1186/1471-2091-8-8
Google Scholar
[21]
M. Mohammad, R. Taeem, S. Hamed, I. Almsasri, H. Alkhatib, M. Hudaib, Y. Bustanji, Scientific Res. Essays 5 (2010) 3750-3755.
Google Scholar
[22]
D. Samarkina, D. Gabdrakhmanov, V. Semenov, F. Valeeva, L. Gubaidullina, L. Zakharova, V. Reznik, A. Konovalov, Self-assembling catalytic systems based on new amphiphile containing purine fragment, exhibiting substrate specificity in hydrolysis of phosphorus, Russian J. Gen. Chem. 86 (2016).
DOI: 10.1134/s1070363216030233
Google Scholar
[23]
H. Boz, p-Coumaric acid in cereals: presence, antioxidant and antimicrobial effects, Food Sci. Technol. 50 (2015) 2323-2328.
DOI: 10.1111/ijfs.12898
Google Scholar
[24]
L. Yan, Z. Kong, Y. Xia, Z. Qi, A novel coumarin-based red fluorogen with AIE, self-assembly and TADF properties, New J. Chem. 40 (2016) 7061-7067.
DOI: 10.1039/c6nj01296e
Google Scholar
[25]
P. Pramitha, D. Bahulayan, Stereoselective synthesis of bio-hybrid amphiphiles of coumarin derivatives by Ugi-Mannich triazole randomization, Bioorganic Med. Chem. Lett. 22 (2012) 2598-2603.
DOI: 10.1016/j.bmcl.2012.01.111
Google Scholar
[26]
G. Behl, M. Sikka, A. Chhikara, M. Chopra, PEG-coumarin based biocompatible self-assembled fluorescent nanoaggregates synthesized via click reactions and studies of aggregation behavior, J. Colloid Interface Sci. 416 (2014) 151-160.
DOI: 10.1016/j.jcis.2013.10.057
Google Scholar
[27]
J. Hyup Lee, J. Kim, Poly(hydroxyethyl acrylate-co-coumaryl acrylate) as a photo responsive amphiphile, J. Industrial and Eng. Chem. 20 (2014) 3075-3080.
DOI: 10.1016/j.jiec.2013.11.046
Google Scholar
[28]
S. Sheet, B. Sen, R. Thounaojam, K. Aguan, S. Khatua, Highly selective light-up Al+3 sensing by coumarin based Schiff base probe: subsequent phosphate sensing DNA binding and live cell imaging, J. Photochem. Photobiol. A. Chem 332 (2017) 101-111.
DOI: 10.1016/j.jphotochem.2016.08.019
Google Scholar
[29]
J. He, Y. Zhao, Light-responsive polymer micelles, nano and microgels based on the reversible photodimerization of coumarin, Dyes Pigments 89 (2011) 278-283.
DOI: 10.1016/j.dyepig.2010.03.032
Google Scholar
[30]
K. Siddiqui, A. Husen, Recent advances in plant-mediated engineered gold nanoparticles and their application in biological system, J. Trace Elements Med. Biol. 40(2017) 10-23.
DOI: 10.1016/j.jtemb.2016.11.012
Google Scholar
[31]
R. Sperling, P. Gil, F. Zhang, M. Zanella, W. Park, Biological applications of gold nanoparticles, Chem. Rev. 37 (2008) 1896-(1908).
Google Scholar
[32]
P. Ts'o, S. Chan, Interaction and association of bases and nucleosides in aqueous solutions, association of 6-methylpurine and 5-bromouridine and treatment of multiple equilibria, J. Am. Chem. Soc. 86 (1964) 4176-4180.
DOI: 10.1021/ja01073a054
Google Scholar
[33]
M. Schwizer, S. Chan, P. Ts'o, Proton magnetic resonance studies of the association of pyrimidine nucleosides and Their Interactions with Purine, J. Am. Chem. Soc. 87 (1965) 5241-5247.
DOI: 10.1021/ja00950a045
Google Scholar
[34]
T. Shimizu, R. Iwaura, M. Masuda, T. Hanada, K. Yase, Internucleobase-interaction-directed self-assembly of nanofibers from homo- and heteroditopic 1, w -nucleobase bolaamphiphiles, J. Am. Chem. Soc. 123 (2001) 5947-5955.
DOI: 10.1021/ja010201i
Google Scholar
[35]
D. Berti, P. Barbaro, I. Bucci, P. Baglioni, Molecular recognition through H-bonding in micelles formed by dioctylphosphatidyl nucleosides. J. Phys. Chem. B. 103 (1999) 4916–4922.
DOI: 10.1021/jp990504n
Google Scholar
[36]
H. Yanagawa, Y. Ogawa, H. Furuta, K. Tsuno, Spontaneous formation of superhelical strands, J. Am. Chem. Soc. 111 (1989) 4567–4570.
DOI: 10.1021/ja00195a006
Google Scholar
[37]
D. Berti, F. Baldelli Bombelli, M. Fortini, P. Baglioni, Amphiphilic self-assemblies decorated by nucleobases, J. Phys. Chem. B. 111 (2007) 11734–11744.
DOI: 10.1021/jp0744073
Google Scholar
[38]
P. Couvreur, L. Reddy, S. Mangenot, J. Poupaert, D. Desmaele, S. Lepetre-Mouelhi, B. Pili, C. Bourgaux, H. Amenitsch, M. Ollivon, Discovery of new hexagonal supramolecular nanostructures formed by squalenoylation of an anticancer nucleoside analogue, Small. 4 (2008).
DOI: 10.1002/smll.200700731
Google Scholar
[39]
V. Allain, C. Bourgaux, P. Couvreur, Self-assembled nucleolipids: from supramolecular structure to soft nucleic acid and drug delivery devices, Nucleic Acids. Res. 40 (2012) 1891-(1903).
DOI: 10.1093/nar/gkr681
Google Scholar
[40]
O. Schall, G. Gokel, Molecular boxes derived from crown ethers and nucleotide bases: probes for Hoogsteen vs. Watson-Crick H-bonding and other base-base interactions in self-assembly processes, J. Am. Chem. Soc. 116 (1994) 6089-6100.
DOI: 10.1021/ja00093a005
Google Scholar
[41]
O. Koroleva, A. Torkova, I. Nikolaev, E. Khrameeva, T. Fedorova, M. Tsentalovich, R. Amarrowicz, Evaluation of the antiradical properties of phenolic acids, Int. J. Mol. Sci. 15 (2014) 16351-16380.
DOI: 10.3390/ijms150916351
Google Scholar
[42]
J. Sessler, J. Jayawickramarajah, C. Sherman, J. Brodbelt, Enhancing Hoosteen interactions: a pyrrole containing purine nucleoside that competes with guanosine self-assembly, J. Am. Chem. Soc. 126 (2004) 11460-11461.
DOI: 10.1021/ja046773v
Google Scholar
[43]
C. Willits, J. Decius, K. Dille, B. Christensen, The infrared spectrum of purine and certain substituted purine derivatives, J. Am. Chem. Soc. 77 (1955) 2569-2572.
DOI: 10.1021/ja01614a073
Google Scholar
[44]
R. Swislocka, M. Kowczyk, M. Sadowy, M. Kalinowska, W. Lewandowski, Spectroscopic (FT-IR, FT-Raman, 1H and 13C NMR) and theoretical studies of p-coumaric acid and alkali metal p-coumarates, Spectroscopy 27 (2012) 35-48.
DOI: 10.1155/2012/546146
Google Scholar
[45]
M. Cintron, D. Hinchcliffe, FT-IR examination of the development of secondary cell wall in cotton fibers, Fibers 3 (2015) 30-40.
DOI: 10.3390/fib3010030
Google Scholar
[46]
G. Yue, S. Su, N. Li, M. Shuai, X. Lai, D. Astruc, P. Zhao, Gold nanoparticles as sensors in the colorimetric and fluorescence detection of chemical warfare agents, Coord. Chem. Rev. 311 (2016) 75-84.
DOI: 10.1016/j.ccr.2015.11.009
Google Scholar
[47]
K. Saha, S. S. Agasti, C. Kim, X. Li, V. M. Rotello, Gold nanoparticles in chemical and biological sensing, Chem. Rev. 112 (2012) 2739-2779.
DOI: 10.1021/cr2001178
Google Scholar
[48]
S. Smitha, D. Philip, K. Gopchandran, Green synthesis of gold nanoparticles using cinnamon zeylanicum leaf broth, Spectrochim. Acta Part A. Mol. Biomol. Spec. 74 (2009) 735-739.
DOI: 10.1016/j.saa.2009.08.007
Google Scholar
[49]
S. Shankar, A. Ahmad, M. Sastry, Geranium leaf assisted biosynthesis of silver nanoparticles, Biotechnol. Prog. 19 (2003) 1627-1631.
DOI: 10.1021/bp034070w
Google Scholar
[50]
A. Dwivedi, K. Gopal, Biosynthesis of silver and gold nanoparticles using chenopodium album leaf extract, Colloids Surf. A. Physicochem. Eng. Asp. 369 (2010) 27-33.
DOI: 10.1016/j.colsurfa.2010.07.020
Google Scholar
[51]
J. Slocik, D. Wright, Biomimetic mineralization of noble metal nanoclusters. Biomacromolecules 4, 5 (2003) 1135-1141.
DOI: 10.1021/bm034003q
Google Scholar
[52]
S. Verma, A. K. Mishra, J. Kumar, The many facets of adenine: coordination, crystal patterns and catalysis, Acc. Chem. Res. 43 (2010) 79-91.
DOI: 10.1021/ar9001334
Google Scholar
[53]
M. Ozyurek, N. Gungor, S. Baki, K. Guclu, R. Apak, Development of silver nanoparticle based method for antioxidant capacity measurement of polyphenols, Anal. Chem. 84 (2012) 8052-8059.
DOI: 10.1021/ac301925b
Google Scholar
[54]
G. Berti, G. Burley, Nucleic acid and nucleotide-mediated synthesis of inorganic nanoparticles, Nature Nanotechnol. 3 (2008) 81-87.
DOI: 10.1038/nnano.2007.460
Google Scholar
[55]
M. Hu, P. Hillyard, G. V. Hartland, T. Kosel, J. Perez-Juste, P. Mulvaney, Nano Lett. 4 (2004) 2493-2497.
DOI: 10.1021/nl048483i
Google Scholar
[56]
L. Gearheart, H. Ploehn, C. Murphy, Oligonucleotide adsorption of gold nanoparticles: a surface-enhanced Raman spectroscopy study of intrinsically bend DNA, J. Phys. Chem. B. 105 (2001) 12609-12615.
DOI: 10.1021/jp0106606
Google Scholar
[57]
S. Hurst, H. Hill, Three dimensional hybridization with polyvalent DNA-Gold nanoparticle conjugates, J. Am. Chem. Soc. 130 (2008) 12192-12200.
DOI: 10.1021/ja804266j
Google Scholar
[58]
R. Tu, R. Marullo, R. Pynn, R. Bitton, H. Bianco-Peled, M. Tirrell, Cooperative DNA binding and assembly by a bZip peptide amphiphile, Soft Matter 6 (2010) 1035-1044.
DOI: 10.1039/b922295b
Google Scholar
[59]
V. Dodero, Z. Quirolo, M. Sequeira, Biomolecular studies by circular dichroism, Frontiers in Biosci. 16 (2011) 61-73.
Google Scholar
[60]
A. Rajendran, B. Nair, Unprecedented dual binding behavior of acridine group of dye: a combined experimental and theoretical investigation for the development of anticancer chemotherapeutic agents, Biochim. Biophys. Acta. (2006) 1760, 1794–1801.
DOI: 10.1016/j.bbagen.2006.08.011
Google Scholar
[61]
S. Xueguang, C. Enhua, B. Chunli, H. Yuian, O. Jingfen, Circular Dichroism spectra of different structures formed by the oligonucleotides, Chinese Sci. Bull. 43 (1998) 1456-1460.
Google Scholar
[62]
J. Kypr, I. Kejnovska, D. Reciuk, M. Vorlickova, Circular Dichroism and conformational polymorphism of DNA, Nucleic Acids Res. 37 (2009) 1713-1725.
DOI: 10.1093/nar/gkp026
Google Scholar
[63]
M. Kulkarni, A. Mukherjee, Understanding B-DNA to A-DNA transition in the right-handed DNA helix: perspective from a local to global transition, Prog. Biophys. Mol. Biol. (2017) (Accepted Manuscript).
DOI: 10.1016/j.pbiomolbio.2017.05.009
Google Scholar
[64]
A. Colasanti, Y. Singh, X-J Lu, W. Olson, Insights into DNA helical transitions found in the Protein-DNA complexes, in: Srinivasan, M.B. a.N. (Ed. ), Biomolecular Forms and Functions, A Celebration of 50 years of the Ramachandran Map. IISc Press-WSPC Publishers, IISc, (2013).
DOI: 10.1142/9789814449144_0019
Google Scholar
[65]
C. Goodman, N. Chari, G. Han, R. Hong, P. Ghosh, V. M. Rotello, DNA-binding by functionalized gold nanoparticles: mechanism and structural requirements, Chem. Biol. Drug Des. 67 (2006) 297-304.
DOI: 10.1111/j.1747-0285.2006.00372.x
Google Scholar
[66]
S. Neidle, Nucleic Acid Structure and Recognition. New York: Oxford University Press (2002) 89–138.
Google Scholar
[67]
J. Chaires, Drug-DNA interactions, Curr. Opin. Struct. Biol. 8 (1998) 314–320.
Google Scholar
[68]
F. Melanie, Y. Roupioz, A. Buhot, Gold nanoparticles surface plasmon resonance enhanced signal for the detection of small molecules on split-aptamer microarrays (Small molecules detection from Split-Aptamers), Microarrays 4 (2015) 41-52.
DOI: 10.3390/microarrays4010041
Google Scholar
[69]
G. Li, X. Li, M. Yang, M-M Chen, L-C Chen, X-L Xiong, A gold nanoparticle enhanced surface plasmon resonance immunosensor for highly sensitive detection of ischemia modified albumin, Sensors 13 (2013) 12794-12803.
DOI: 10.3390/s131012794
Google Scholar