Development of Self-Assembled Gold Nanoparticle Bound Amino Hydroxy Mercaptopurine Hybrids as Sensors for DNA Binding

Article Preview

Abstract:

A new amphiphilic bio-organic material was developed by conjugating the xanthine oxidase inhibitor, 2-amino-6-hydroxy-8-mercaptopurine (AMHP) with the naturally occurring polyphenol coumaric acid (CA). The formed product, AMHP-CA was allowed to self-assemble at a pH range of 4 through 8. Nanospheres or fibrous assemblies ranging upto micrometers in length were formed, depending upon growth conditions. Furthermore, it was found that the assemblies biomimetically formed gold nanoparticles on its surfaces resulting in AMHP-CA-AuNP hybrids. The DNA sensing ability of the AuNP bound AMHP-CA assemblies was investigated at varying concentrations by studying the changes in conformations of salmon milt DNA by CD spectroscopy and by examining live binding with surface plasmon resonance (SPR) analysis. AuNP bound AMHP-CA assemblies had significantly increased DNA sensing ability and SPR signal compared to binding interactions in the absence of AuNPs. Thus, in this study it was found that AMHP-CA-AuNP assemblies may function as biosensors for DNA detection.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

20-33

Citation:

Online since:

November 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. M. Allen, P. R. Cullis, Liposomal drug delivery systems: from concept to clinical applications, Adv. Drug Deliv. Rev. 65 (2013) 36-48.

DOI: 10.1016/j.addr.2012.09.037

Google Scholar

[2] E. Busseron, Y. Ruff, E. Moulin, N. Giuseppone, Supramolecular self-assemblies as functional nanomaterials, Nanoscale 5 (2013) 7098-7140.

DOI: 10.1039/c3nr02176a

Google Scholar

[3] M. Antonietti, S. Forster, Vesicles and liposomes: a self-assembly principle beyond lipids, Adv. Materials 15 (2003) 1323-1333.

DOI: 10.1002/adma.200300010

Google Scholar

[4] T. Liu, E. Diemann, H. Li, A. Dress, A. Müller, Self-assembly in aqueous solution of wheel-shaped mo154 oxide clusters into vesicles, Nature 426 (2003), 59-62.

DOI: 10.1038/nature02036

Google Scholar

[5] J. Hartgerink, J. Granja, R. Milligan, M. Ghadiri, Self-assembling peptide nanotubes, J. Am. Chem. Soc. 118 (1996) 43-50.

DOI: 10.1021/ja953070s

Google Scholar

[6] K. Matsuoka, T. Yoshimura, M. Bong, C. Honda, K. Endo, Nanocage aggregates composed of bilayer sheets, Langmuir 24 (2008) 5676-5678.

DOI: 10.1021/la800618v

Google Scholar

[7] Z. Cheng, D. Elias, N. Kamat, E. Johnston, A. Poloukhtine, V. Popik, D. Hammer, A. Tsourkas, Improved tumor targeting of polymer-based nanovesicles using polymer–lipid blends, Bioconjugate Chem. 22 (2011) 2021-(2029).

DOI: 10.1021/bc200214g

Google Scholar

[8] S. Podaralla, R. Averineni, M. Alqahtani, O. Perumal, Synthesis of novel biodegradable methoxy poly(ethylene glycol)–zein micelles for effective delivery of curcumin, Mol. Pharmaceutics. 9 (2012) 2778-2786.

DOI: 10.1021/mp2006455

Google Scholar

[9] Y. Liu, Z. Sun, P. Chen, Z. Huang, Y. Gao, L. Shi, Y. Zhao, Y. Chen, Y. Li, Glycopeptide nanoconjugates based on multilayer self-assembly as an antitumor vaccine, Bioconjugate Chem. 26, (2015) 1439–1442.

DOI: 10.1021/acs.bioconjchem.5b00150

Google Scholar

[10] H. Mansur, A. Mansur, A. Soriano-Araújo, Z. Lobato, S. de Carvalho, F. Leite, Mater. Sci. Eng. C. Mater. Biol. Appl. 52 (2015) 61-71.

Google Scholar

[11] S. Ke, J-Y. Wang, J, Pei, p-Conjugated aromatics based on truxene: synthesis, self-assembly and applications, Chem. Rec. 15 (2015) 52-72.

DOI: 10.1002/tcr.201402071

Google Scholar

[12] M. Souto, C. Rovira, I. Ratera, J. Veciana, Ttf-ptm dyads: from switched molecular self-assembly in solution to radical conductors in solid state. Cryst. Eng. Comm. 19 (2017) 197-206.

DOI: 10.1039/c6ce01660j

Google Scholar

[13] H. Zhao, X. Guo, S. He, X. Zeng, X, Zhou, C. Zhang, J. Hu, X. Wu, Z. Xing, L. Chug, Y. He, Q. Chen, Complex self-assembly of pyrimido[4, 5-d]pyrimidine nucleoside supramolecular structures. Nature Commun. 5 (2014) doi: 10. 1038/ncomms4108.

DOI: 10.1038/ncomms4108

Google Scholar

[14] R. Chakraborty, P. Mukherjee, P. Stang, Supramolecular coordination: self-assembly of finite two and three-dimensional ensembles, Chem. Rev. 111 (2011) 6810-6918.

DOI: 10.1021/cr200077m

Google Scholar

[15] C. Krishnamohan Sharma, S. Griffin, R. Rogers, Simple routes to supramolecular squares with ligand corners: 1: 1Ag1: pyrimidine cationic tetranuclear assemblies. Chem. Commun. (1998) 215-216.

DOI: 10.1039/a706021a

Google Scholar

[16] S. Datta, S. Samanta, S. Bhattacharya, Induction of supramolecular chirality in the self-assemblies of lipophilic pyrimidine derivatives by choice of the amino acid based chiral spacer. Chem. Eur. J. 19 (2013) 11364-11373.

DOI: 10.1002/chem.201300605

Google Scholar

[17] T. Girogi, S. Lena, P. Mariani, M. Cremonini, S. Masiero, S. Pieraccini, J. Rabe, P. Samori, G. Spada, G. Gottarelli, Supramolecular helices via self-assemblies of 8-oxoguanosines, J. Am. Chem. Soc. 125 (2003) 14741-14749.

DOI: 10.1021/ja0364827

Google Scholar

[18] B. Cafferty, I. Gallego, M. Chen, K. Farley, R. Eritja, N. Hud, Efficient self-assembly in water of long noncovalent polymers by nucleobase analogues, J. Am. Chem. Soc. 135 (2013) 2447-2450.

DOI: 10.1021/ja312155v

Google Scholar

[19] A. Herland, P. Bjork, K. Nilsson, J. Olsson, P. Asberg, P. Konradsson, P. Hammarstrom, O. Inganas, Electroactive luminescent self-assembled bio-organic nanowires: integration of semiconducting oligoelectrolytes within amyloidogenic proteins, Adv. Mater. 17 (2005).

DOI: 10.1002/adma.200500183

Google Scholar

[20] S. Kalra, G. Jena, K. Tikoo, A. Mukhopadhyay, Preferential inhibition of xanthine oxidase by 2-amino-6-hydroxy-8-mercaptopurine and 2-amino-6-purine-thiol, BMC Biochemistry 8: 8 (2007) DOI: 10. 1186/1471-2091-8-8.

DOI: 10.1186/1471-2091-8-8

Google Scholar

[21] M. Mohammad, R. Taeem, S. Hamed, I. Almsasri, H. Alkhatib, M. Hudaib, Y. Bustanji, Scientific Res. Essays 5 (2010) 3750-3755.

Google Scholar

[22] D. Samarkina, D. Gabdrakhmanov, V. Semenov, F. Valeeva, L. Gubaidullina, L. Zakharova, V. Reznik, A. Konovalov, Self-assembling catalytic systems based on new amphiphile containing purine fragment, exhibiting substrate specificity in hydrolysis of phosphorus, Russian J. Gen. Chem. 86 (2016).

DOI: 10.1134/s1070363216030233

Google Scholar

[23] H. Boz, p-Coumaric acid in cereals: presence, antioxidant and antimicrobial effects, Food Sci. Technol. 50 (2015) 2323-2328.

DOI: 10.1111/ijfs.12898

Google Scholar

[24] L. Yan, Z. Kong, Y. Xia, Z. Qi, A novel coumarin-based red fluorogen with AIE, self-assembly and TADF properties, New J. Chem. 40 (2016) 7061-7067.

DOI: 10.1039/c6nj01296e

Google Scholar

[25] P. Pramitha, D. Bahulayan, Stereoselective synthesis of bio-hybrid amphiphiles of coumarin derivatives by Ugi-Mannich triazole randomization, Bioorganic Med. Chem. Lett. 22 (2012) 2598-2603.

DOI: 10.1016/j.bmcl.2012.01.111

Google Scholar

[26] G. Behl, M. Sikka, A. Chhikara, M. Chopra, PEG-coumarin based biocompatible self-assembled fluorescent nanoaggregates synthesized via click reactions and studies of aggregation behavior, J. Colloid Interface Sci. 416 (2014) 151-160.

DOI: 10.1016/j.jcis.2013.10.057

Google Scholar

[27] J. Hyup Lee, J. Kim, Poly(hydroxyethyl acrylate-co-coumaryl acrylate) as a photo responsive amphiphile, J. Industrial and Eng. Chem. 20 (2014) 3075-3080.

DOI: 10.1016/j.jiec.2013.11.046

Google Scholar

[28] S. Sheet, B. Sen, R. Thounaojam, K. Aguan, S. Khatua, Highly selective light-up Al+3 sensing by coumarin based Schiff base probe: subsequent phosphate sensing DNA binding and live cell imaging, J. Photochem. Photobiol. A. Chem 332 (2017) 101-111.

DOI: 10.1016/j.jphotochem.2016.08.019

Google Scholar

[29] J. He, Y. Zhao, Light-responsive polymer micelles, nano and microgels based on the reversible photodimerization of coumarin, Dyes Pigments 89 (2011) 278-283.

DOI: 10.1016/j.dyepig.2010.03.032

Google Scholar

[30] K. Siddiqui, A. Husen, Recent advances in plant-mediated engineered gold nanoparticles and their application in biological system, J. Trace Elements Med. Biol. 40(2017) 10-23.

DOI: 10.1016/j.jtemb.2016.11.012

Google Scholar

[31] R. Sperling, P. Gil, F. Zhang, M. Zanella, W. Park, Biological applications of gold nanoparticles, Chem. Rev. 37 (2008) 1896-(1908).

Google Scholar

[32] P. Ts'o, S. Chan, Interaction and association of bases and nucleosides in aqueous solutions, association of 6-methylpurine and 5-bromouridine and treatment of multiple equilibria, J. Am. Chem. Soc. 86 (1964) 4176-4180.

DOI: 10.1021/ja01073a054

Google Scholar

[33] M. Schwizer, S. Chan, P. Ts'o, Proton magnetic resonance studies of the association of pyrimidine nucleosides and Their Interactions with Purine, J. Am. Chem. Soc. 87 (1965) 5241-5247.

DOI: 10.1021/ja00950a045

Google Scholar

[34] T. Shimizu, R. Iwaura, M. Masuda, T. Hanada, K. Yase, Internucleobase-interaction-directed self-assembly of nanofibers from homo- and heteroditopic 1, w -nucleobase bolaamphiphiles, J. Am. Chem. Soc. 123 (2001) 5947-5955.

DOI: 10.1021/ja010201i

Google Scholar

[35] D. Berti, P. Barbaro, I. Bucci, P. Baglioni, Molecular recognition through H-bonding in micelles formed by dioctylphosphatidyl nucleosides. J. Phys. Chem. B. 103 (1999) 4916–4922.

DOI: 10.1021/jp990504n

Google Scholar

[36] H. Yanagawa, Y. Ogawa, H. Furuta, K. Tsuno, Spontaneous formation of superhelical strands, J. Am. Chem. Soc. 111 (1989) 4567–4570.

DOI: 10.1021/ja00195a006

Google Scholar

[37] D. Berti, F. Baldelli Bombelli, M. Fortini, P. Baglioni, Amphiphilic self-assemblies decorated by nucleobases, J. Phys. Chem. B. 111 (2007) 11734–11744.

DOI: 10.1021/jp0744073

Google Scholar

[38] P. Couvreur, L. Reddy, S. Mangenot, J. Poupaert, D. Desmaele, S. Lepetre-Mouelhi, B. Pili, C. Bourgaux, H. Amenitsch, M. Ollivon, Discovery of new hexagonal supramolecular nanostructures formed by squalenoylation of an anticancer nucleoside analogue, Small. 4 (2008).

DOI: 10.1002/smll.200700731

Google Scholar

[39] V. Allain, C. Bourgaux, P. Couvreur, Self-assembled nucleolipids: from supramolecular structure to soft nucleic acid and drug delivery devices, Nucleic Acids. Res. 40 (2012) 1891-(1903).

DOI: 10.1093/nar/gkr681

Google Scholar

[40] O. Schall, G. Gokel, Molecular boxes derived from crown ethers and nucleotide bases: probes for Hoogsteen vs. Watson-Crick H-bonding and other base-base interactions in self-assembly processes, J. Am. Chem. Soc. 116 (1994) 6089-6100.

DOI: 10.1021/ja00093a005

Google Scholar

[41] O. Koroleva, A. Torkova, I. Nikolaev, E. Khrameeva, T. Fedorova, M. Tsentalovich, R. Amarrowicz, Evaluation of the antiradical properties of phenolic acids, Int. J. Mol. Sci. 15 (2014) 16351-16380.

DOI: 10.3390/ijms150916351

Google Scholar

[42] J. Sessler, J. Jayawickramarajah, C. Sherman, J. Brodbelt, Enhancing Hoosteen interactions: a pyrrole containing purine nucleoside that competes with guanosine self-assembly, J. Am. Chem. Soc. 126 (2004) 11460-11461.

DOI: 10.1021/ja046773v

Google Scholar

[43] C. Willits, J. Decius, K. Dille, B. Christensen, The infrared spectrum of purine and certain substituted purine derivatives, J. Am. Chem. Soc. 77 (1955) 2569-2572.

DOI: 10.1021/ja01614a073

Google Scholar

[44] R. Swislocka, M. Kowczyk, M. Sadowy, M. Kalinowska, W. Lewandowski, Spectroscopic (FT-IR, FT-Raman, 1H and 13C NMR) and theoretical studies of p-coumaric acid and alkali metal p-coumarates, Spectroscopy 27 (2012) 35-48.

DOI: 10.1155/2012/546146

Google Scholar

[45] M. Cintron, D. Hinchcliffe, FT-IR examination of the development of secondary cell wall in cotton fibers, Fibers 3 (2015) 30-40.

DOI: 10.3390/fib3010030

Google Scholar

[46] G. Yue, S. Su, N. Li, M. Shuai, X. Lai, D. Astruc, P. Zhao, Gold nanoparticles as sensors in the colorimetric and fluorescence detection of chemical warfare agents, Coord. Chem. Rev. 311 (2016) 75-84.

DOI: 10.1016/j.ccr.2015.11.009

Google Scholar

[47] K. Saha, S. S. Agasti, C. Kim, X. Li, V. M. Rotello, Gold nanoparticles in chemical and biological sensing, Chem. Rev. 112 (2012) 2739-2779.

DOI: 10.1021/cr2001178

Google Scholar

[48] S. Smitha, D. Philip, K. Gopchandran, Green synthesis of gold nanoparticles using cinnamon zeylanicum leaf broth, Spectrochim. Acta Part A. Mol. Biomol. Spec. 74 (2009) 735-739.

DOI: 10.1016/j.saa.2009.08.007

Google Scholar

[49] S. Shankar, A. Ahmad, M. Sastry, Geranium leaf assisted biosynthesis of silver nanoparticles, Biotechnol. Prog. 19 (2003) 1627-1631.

DOI: 10.1021/bp034070w

Google Scholar

[50] A. Dwivedi, K. Gopal, Biosynthesis of silver and gold nanoparticles using chenopodium album leaf extract, Colloids Surf. A. Physicochem. Eng. Asp. 369 (2010) 27-33.

DOI: 10.1016/j.colsurfa.2010.07.020

Google Scholar

[51] J. Slocik, D. Wright, Biomimetic mineralization of noble metal nanoclusters. Biomacromolecules 4, 5 (2003) 1135-1141.

DOI: 10.1021/bm034003q

Google Scholar

[52] S. Verma, A. K. Mishra, J. Kumar, The many facets of adenine: coordination, crystal patterns and catalysis, Acc. Chem. Res. 43 (2010) 79-91.

DOI: 10.1021/ar9001334

Google Scholar

[53] M. Ozyurek, N. Gungor, S. Baki, K. Guclu, R. Apak, Development of silver nanoparticle based method for antioxidant capacity measurement of polyphenols, Anal. Chem. 84 (2012) 8052-8059.

DOI: 10.1021/ac301925b

Google Scholar

[54] G. Berti, G. Burley, Nucleic acid and nucleotide-mediated synthesis of inorganic nanoparticles, Nature Nanotechnol. 3 (2008) 81-87.

DOI: 10.1038/nnano.2007.460

Google Scholar

[55] M. Hu, P. Hillyard, G. V. Hartland, T. Kosel, J. Perez-Juste, P. Mulvaney, Nano Lett. 4 (2004) 2493-2497.

DOI: 10.1021/nl048483i

Google Scholar

[56] L. Gearheart, H. Ploehn, C. Murphy, Oligonucleotide adsorption of gold nanoparticles: a surface-enhanced Raman spectroscopy study of intrinsically bend DNA, J. Phys. Chem. B. 105 (2001) 12609-12615.

DOI: 10.1021/jp0106606

Google Scholar

[57] S. Hurst, H. Hill, Three dimensional hybridization with polyvalent DNA-Gold nanoparticle conjugates, J. Am. Chem. Soc. 130 (2008) 12192-12200.

DOI: 10.1021/ja804266j

Google Scholar

[58] R. Tu, R. Marullo, R. Pynn, R. Bitton, H. Bianco-Peled, M. Tirrell, Cooperative DNA binding and assembly by a bZip peptide amphiphile, Soft Matter 6 (2010) 1035-1044.

DOI: 10.1039/b922295b

Google Scholar

[59] V. Dodero, Z. Quirolo, M. Sequeira, Biomolecular studies by circular dichroism, Frontiers in Biosci. 16 (2011) 61-73.

Google Scholar

[60] A. Rajendran, B. Nair, Unprecedented dual binding behavior of acridine group of dye: a combined experimental and theoretical investigation for the development of anticancer chemotherapeutic agents, Biochim. Biophys. Acta. (2006) 1760, 1794–1801.

DOI: 10.1016/j.bbagen.2006.08.011

Google Scholar

[61] S. Xueguang, C. Enhua, B. Chunli, H. Yuian, O. Jingfen, Circular Dichroism spectra of different structures formed by the oligonucleotides, Chinese Sci. Bull. 43 (1998) 1456-1460.

Google Scholar

[62] J. Kypr, I. Kejnovska, D. Reciuk, M. Vorlickova, Circular Dichroism and conformational polymorphism of DNA, Nucleic Acids Res. 37 (2009) 1713-1725.

DOI: 10.1093/nar/gkp026

Google Scholar

[63] M. Kulkarni, A. Mukherjee, Understanding B-DNA to A-DNA transition in the right-handed DNA helix: perspective from a local to global transition, Prog. Biophys. Mol. Biol. (2017) (Accepted Manuscript).

DOI: 10.1016/j.pbiomolbio.2017.05.009

Google Scholar

[64] A. Colasanti, Y. Singh, X-J Lu, W. Olson, Insights into DNA helical transitions found in the Protein-DNA complexes, in: Srinivasan, M.B. a.N. (Ed. ), Biomolecular Forms and Functions, A Celebration of 50 years of the Ramachandran Map. IISc Press-WSPC Publishers, IISc, (2013).

DOI: 10.1142/9789814449144_0019

Google Scholar

[65] C. Goodman, N. Chari, G. Han, R. Hong, P. Ghosh, V. M. Rotello, DNA-binding by functionalized gold nanoparticles: mechanism and structural requirements, Chem. Biol. Drug Des. 67 (2006) 297-304.

DOI: 10.1111/j.1747-0285.2006.00372.x

Google Scholar

[66] S. Neidle, Nucleic Acid Structure and Recognition. New York: Oxford University Press (2002) 89–138.

Google Scholar

[67] J. Chaires, Drug-DNA interactions, Curr. Opin. Struct. Biol. 8 (1998) 314–320.

Google Scholar

[68] F. Melanie, Y. Roupioz, A. Buhot, Gold nanoparticles surface plasmon resonance enhanced signal for the detection of small molecules on split-aptamer microarrays (Small molecules detection from Split-Aptamers), Microarrays 4 (2015) 41-52.

DOI: 10.3390/microarrays4010041

Google Scholar

[69] G. Li, X. Li, M. Yang, M-M Chen, L-C Chen, X-L Xiong, A gold nanoparticle enhanced surface plasmon resonance immunosensor for highly sensitive detection of ischemia modified albumin, Sensors 13 (2013) 12794-12803.

DOI: 10.3390/s131012794

Google Scholar