Zinc Selenide Quantum Dots Light Emitting Devices (ZnSe QDs-LEDs) with Different Organic Polymers

Article Preview

Abstract:

The physical and chemical characterize of quantum dots (QDs) extensively depend upon the optical and morphological factors such as size and shape. The zinc selenide (ZnSe) quantum dots (QDs) have been prepared by chemical method and used to fabricate quantum dot hybrid junction devices with different types of organics polymers. The optical studies illustrate that the band gap value from the photoluminescence (PL) with high intensity of these QDs is found about 3.1 eV. The electroluminescence's (EL) hybrid devices were demonstrated by room temperature PL and electroluminescence (EL). Current-voltage (I–V) characteristics indicate that the output current is good compared to the few voltages (5.5 V) used which gives good results to get a generation of white light. The EL spectrum reveals a broad emission band covering the range from 350 - 700 nm. The emissions producing this white luminescence were recognized depending on the chromaticity coordinates (CIE 1931). The correlated color temperature (CCT) was found to be about 5759, 3500 and 3498 K for ITO/TPD/ZnSe, ITO/PPV/ZnSe and ITO/PEDOT/ZnSe QDs respectively. Fabrication of EL- hybrid devices from semiconductors materials (ZnSe QDs) with holes injection organic polymer (TPD, PPV and PEDOT) was effective in white light generation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

11-19

Citation:

Online since:

November 2017

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Bhanoth, A. Kshirsagar, P. K. Khanna, A. Tyagi, A. Leekha, V. Kumar, A. Verma. Synthesis, characterization and bio-evaluation of core-shell QDs with ZnSe, CdS and CdSe combinations, Advanced Materials Letters, 8, 4, (2017), 352-361.

DOI: 10.5185/amlett.2017.6495

Google Scholar

[2] H. Chen, B. Lo, J. Hwang, G. Chang, C. Chen, S. Tasi, and S. Wang. Colloidal ZnSe, ZnSe/ZnS, and ZnSe/ZnSeS quantum dots synthesized from ZnO, J. Phys. Chem. B, 108, (2004), 17119-17123.

DOI: 10.1021/jp047035w

Google Scholar

[3] A. S. Hassanien, K. A. Aly, A. A. Akl. Study of optical properties of thermally evaporated ZnSe thin films annealed at different pulsed laser powers, Journal of Alloys and Compounds, (2016), doi: 10. 1016/j. jallcom. 2016. 06. 180.

DOI: 10.1016/j.jallcom.2016.06.180

Google Scholar

[4] L. Su, X. Zhang, Y. Zhang, A. L. Rogach. Recent progress in quantum dot based white light-emitting devices, Top Curr Chem (Z) (Springer), (2016), 374: 42.

DOI: 10.1007/s41061-016-0041-3

Google Scholar

[5] C. Ippen, T. Greco, Y. Kim, J. Kim, M. S. Oh, C. J. Han, A. Wedel. ZnSe/ZnS quantum dots as emitting material in blue QD-LEDs with narrow emission peak and wavelength tunability, Organic Electronics, 15, (2014), 126–131.

DOI: 10.1016/j.orgel.2013.11.003

Google Scholar

[6] W. Ji, P. Jing, W. Xu, X. Yuan, Y. Wang, J. Zhao, A. K. -Y. Jen. High color purity ZnSe/ZnS core/shell quantum dot based blue light emitting diodes with an inverted device structure, Applied Physics Letters 103, (2013), 053106.

DOI: 10.1063/1.4817086

Google Scholar

[7] C. -J. Chena, C. -Y. Huangb, J. -Y. Lienc, S. -L. Wangc, R. -K. Chianga. High-performance electroluminescence devices based on size-uniform gigantic red-emission quantum dots, Emissive Displays: Quantum Dot, 47, (2016).

Google Scholar

[8] H. Song and S. Lee. Red light emitting solid state hybrid quantum dot–near-UV GaN LED devices, Nanotechnology, 18, (2007), 255202.

DOI: 10.1088/0957-4484/18/25/255202

Google Scholar

[9] Y. Yang, Y. Zheng, W. Cao, A. Titov, J. Hyvonen, J. R. Manders, J. Xue, P. H. Holloway and L. Qian, High-efficiency light-emitting devices based on quantum dots with tailored nanostructures, Nature Photonics, (2015).

DOI: 10.1038/nphoton.2015.36

Google Scholar

[10] S. L. Xue, S. X. Wu, Q. Z. Zeng, P. Xie, K. X. Gan, J. Wei, S. Y. Bu, X. N. Ye, L. Xie, R. J. Zou, C. M. Zhang, P. F. Zhu. Synthesis, field emission properties and optical properties of ZnSe nanoflowers, (2016).

DOI: 10.1016/j.apsusc.2016.01.022

Google Scholar

[11] S. Sathish, S. Balakumar. Effect of synthesis parameters of polyol technique on photoluminescence properties of ZnSe nanoparticulates, Journal of Luminescence, (2017), doi: 10. 1016/j. jlumin. 2017. 05. 033.

DOI: 10.1016/j.jlumin.2017.05.033

Google Scholar

[12] Z. Fang, P. Wu, X. Zhong and Y. Yang. Synthesis of highly luminescent Mn: ZnSe/ZnS nanocrystals in aqueous media, Nanotechnology, 21, (2010), 305604.

DOI: 10.1088/0957-4484/21/30/305604

Google Scholar

[13] M. Kamruzzaman, J. A. Zapien. Synthesis and characterization of ZnO/ZnSe NWs/PbS QDs solar cell, J. Nanopart Res., (2017), 19: 125.

DOI: 10.1007/s11051-016-3729-y

Google Scholar

[14] S.C. Dey, S.S. Nath. Electroluminescence of colloidal ZnSe quantum dots, Journal of Luminescence, 131, (2011), 2707–2710.

DOI: 10.1016/j.jlumin.2011.06.030

Google Scholar

[15] P. O. Anikeeva, J. E. Halpert, M. G. Bawendi, and V. Bulovic. Quantum dot light-emitting devices with electroluminescence tunable over the entire visible spectrum, Nano Lett., 9, 7, (2009).

DOI: 10.1021/nl9002969

Google Scholar

[16] S. Janos. Colorimetry: understanding the CIE system, John Wiley & Sons, (2007), 212–213, ISBN 9780470175620.

Google Scholar

[17] M. Islam, R. Dangol, M. Hyvärinen, P. Bhusal, M. Puolakka, and L. Halonen. User acceptance studies for LED office lighting: lamp spectrum, spatial brightness and illuminance level, Lighting Research and Technology, 47, 1, (2015), 54-79.

DOI: 10.1177/1477153513514425

Google Scholar