PLA-HPC Fibrous Membranes for Temperature-Responsive Drug Release

Article Preview

Abstract:

In this study, Polylactic acid and Hydroxypropyl cellulose (PLA-HPC) fibers were fabricated by electrospinning. Methylene blue (MEB), as a model hydrophilic drug was embedded into PLA-HPC fibrous membranes. SEM results depicted that fibers are smooth, cylindrical, uniform and it confirmed the incorporation of MEB in PLA fibers alter the fibers morphology. Studies show the on-demand release of drug from PLA-HPC fibrous membranes under temperature stimuli which were absent in membranes manufactured out of PLA. This can be attributed to reversible volume phase transitions of HPC molecules in response to applied external temperature. This study may provide more efficient strategies for developing materials with on-demand drug release capability.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

34-41

Citation:

Online since:

November 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Priya James, R. John, and A. Alex, Smart polymers for the controlled delivery of drugs – a concise overview, Acta Pharm. Sin. B, vol. 4, no. 2, p.120–127, (2014).

DOI: 10.1016/j.apsb.2014.02.005

Google Scholar

[2] P. Bawa, V. Pillay, Y. E. Choonara, and L. C. du Toit, Stimuli-responsive polymers and their applications in drug delivery, Biomed. Mater., vol. 4, no. 22001, p.1–15, (2009).

DOI: 10.1088/1748-6041/4/2/022001

Google Scholar

[3] E. Cabane, X. Zhang, K. Langowska, C. G. Palivan, and W. Meier, Stimuli-responsive polymers and their applications in nanomedicine, Biointerphases, vol. 7, no. 1–4, p.1–27, (2012).

DOI: 10.1007/s13758-011-0009-3

Google Scholar

[4] M. Kumar et al., Mixture of PLA-PEG and biotinylated albumin enables immobilization of avidins on electrospun fibers, J. Biomed. Mater. Res. - Part A, vol. 105A, no. 105A, p.356–362, (2017).

DOI: 10.1002/jbm.a.35920

Google Scholar

[5] Y. Ikada and H. Tsuji, Biodegradable polyesters for medical and ecological applications, Macromol. Rapid Commun., vol. 21, no. 3, p.117–132, (2000).

DOI: 10.1002/(sici)1521-3927(20000201)21:3<117::aid-marc117>3.0.co;2-x

Google Scholar

[6] Y. Bai et al., Novel thermo- and pH-responsive hydroxypropyl cellulose- and poly (l-glutamic acid)-based microgels for oral insulin controlled release, Carbohydr. Polym., vol. 89, no. 4, p.1207–1214, (2012).

DOI: 10.1016/j.carbpol.2012.03.095

Google Scholar

[7] J. Gao, G. Haidar, X. Lu, and Z. Hu, Self-association of hydroxypropylcellulose in water, Macromolecules, vol. 34, no. 7, p.2242–2247, (2001).

DOI: 10.1021/ma001631g

Google Scholar

[8] D. Bielska et al., Self-organized thermo-responsive hydroxypropyl cellulose nanoparticles for curcumin delivery, Eur. Polym. J., vol. 49, no. 9, p.2485–2494, (2013).

DOI: 10.1016/j.eurpolymj.2013.02.012

Google Scholar

[9] T. Wüstenberg, Cellulose and cellulose derivatives in the food industry. Wiley-VCH Verlag GmbH & Co. KGaA, (2015).

Google Scholar

[10] M. Bikram and J. L. West, Thermo-responsive systems for controlled drug delivery, Taylor Fr., vol. 5, no. 10, p.1077–1091, (2008).

DOI: 10.1517/17425247.5.10.1077

Google Scholar

[11] M. Shibayama and T. Tanaka, Volume phase transtition and related phenomena of polymer gels, Adv. Polym. Sci., vol. 109, p.1–62, (1993).

Google Scholar

[12] S. Shukla, E. Brinley, H. J. Cho, and S. Seal, Electrospinning of hydroxypropyl cellulose fibers and their application in synthesis of nano and submicron tin oxide fibers, Polymer (Guildf)., vol. 46, no. 26, p.12130–12145, (2005).

DOI: 10.1016/j.polymer.2005.10.070

Google Scholar

[13] V. Periasamy, K. Devarayan, M. Hachisu, J. Araki, and K. Ohkawa, Chemical Modifications of Electrospun Non-woven Hydroxypropyl Cellulose Fabrics for Immobilization of Aminoacylase-I, J. Fiber Bioeng. Informatics, vol. 5, no. 2, p.191–205, (2012).

DOI: 10.3993/jfbi06201208

Google Scholar

[14] L. Francis, A. Balakrishnan, K. P. Sanosh, and E. Marsano, Characterization and tensile strength of HPC–PEO composite fibers produced by electrospinning, (2010).

DOI: 10.1016/j.matlet.2010.05.043

Google Scholar

[15] D. Chen and B. Sun, New tissue engineering material copolymers of derivatives of cellulose and lactide: their synthesis and characterization, Mater. Sci. Eng. C, vol. 11, no. 1, p.57–60, (2000).

DOI: 10.1016/s0928-4931(00)00131-4

Google Scholar

[16] A. Gutowska, Y. H. Bae, H. Jacobs, S. W. Kim, and J. Feijen, Thermosensitive Interpenetrating Polymer Networks: Synthesis, Characterization, and Macromolecular Release, Macromolecules, vol. 27, no. 15, p.4167–4175, (1994).

DOI: 10.1021/ma00093a018

Google Scholar

[17] M. Carenza, F. Martellini, H. I. Mei, and J. L. Bali, Water and drug transport in radiation-crosslinked poly ( 2-methoxyethylacrylate- co -dimethyl acrylamide ) and poly ( 2-methoxyethylacrylate- co -acrylamide ) hydrogels, Radiat. Phys. Chem., vol. 66, p.155–159, (2003).

DOI: 10.1016/s0969-806x(02)00283-9

Google Scholar

[18] K. Rao, K. Rao, and C. -S. Ha, Stimuli Responsive Poly(Vinyl Caprolactam) Gels for Biomedical Applications, Gels, vol. 2, no. 1, p.6, (2016).

DOI: 10.3390/gels2010006

Google Scholar

[19] L. Li, X. Jiang, and R. Zhuo, Synthesis and Characterization of Thermoresponsive Polymers Containing Reduction-Sensitive Disulfide Linkage, J. Polym. Sci., vol. 47, p.5989–5997, (2009).

DOI: 10.1002/pola.23642

Google Scholar

[20] K. B. Doorty et al., Poly(N-isopropylacrylamide) co-polymer films as potential vehicles for delivery of an antimitotic agent to vascular smooth muscle cells, Cardiovasc. Pathol., vol. 12, no. 2, p.105–110, Mar. (2003).

DOI: 10.1016/s1054-8807(02)00165-5

Google Scholar

[21] M. Nakayama, T. Okano, T. Miyazaki, F. Kohori, K. Sakai, and M. Yokoyama, Molecular design of biodegradable polymeric micelles for temperature-responsive drug release, J. Control. Release, vol. 115, no. 1, p.46–56, (2006).

DOI: 10.1016/j.jconrel.2006.07.007

Google Scholar

[22] D. Y. Furgeson, M. R. Dreher, and A. Chilkoti, Structural optimization of a 'smart' doxorubicin-polypeptide conjugate for thermally targeted delivery to solid tumors, J. Control. Release, vol. 110, no. 2, p.362–369, (2006).

DOI: 10.1016/j.jconrel.2005.10.006

Google Scholar

[23] M. Chen, Y. F. Li, and F. Besenbacher, Electrospun Nanofibers-Mediated On-Demand Drug Release, Adv. Healthc. Mater., vol. 3, no. 11, p.1721–1732, (2014).

DOI: 10.1002/adhm.201400166

Google Scholar

[24] Z. M. Huang, Y. Z. Zhang, M. Kotaki, and S. Ramakrishna, A review on polymer nanofibers by electrospinning and their applications in nanocomposites, Compos. Sci. Technol., vol. 63, no. 15, p.2223–2253, (2003).

DOI: 10.1016/s0266-3538(03)00178-7

Google Scholar

[25] M. Kumar, D. Unruh, R. Sindelar, and F. Renz, Preparation of Magnetic Polylactic Acid Fiber Mats by Electrospinning, Nano Hybrids Compos., vol. 14, p.39–47, (2017).

DOI: 10.4028/www.scientific.net/nhc.14.39

Google Scholar

[26] M. Kumar et al., Electrospinning synthesis and characterization of PLA-PEG-MNPs composite fibrous membranes, Hyperfine Interact., vol. 238, no. 1, p.66, (2017).

DOI: 10.1007/s10751-017-1435-5

Google Scholar

[27] E. R. Kenawy et al., Release of tetracycline hydrochloride from electrospun poly(ethylene-co-vinylacetate), poly(lactic acid), and a blend, J. Control. Release, vol. 81, no. 1–2, p.57–64, (2002).

DOI: 10.1016/s0168-3659(02)00041-x

Google Scholar

[28] K. A. Heitfeld, T. Guo, G. Yang, and D. W. Schaefer, Temperature responsive hydroxypropyl cellulose for encapsulation, Mater. Sci. Eng. C, vol. 28, no. 3, p.374–379, (2008).

DOI: 10.1016/j.msec.2007.04.012

Google Scholar

[29] M. Shibayama and T. Tanaka, Volume phase transition and related phenomena of polymer gels, in Responsive Gels: Volume Transitions I, K. Dušek, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993, p.1–62.

DOI: 10.1007/3-540-56791-7_1

Google Scholar

[30] X. Lu, Z. Hu, and J. Gao, Synthesis and light scattering study of hydroxypropyl cellulose microgels, Macromolecules, vol. 33, no. 23, p.8698–8702, (2000).

DOI: 10.1021/ma000776k

Google Scholar

[31] T. Baltes, F. Garret-Flaudy, and R. Freitag, Investigation of the LCST of polyacrylamides as a function of molecular parameters and the solvent composition, J. Polym. Sci. Part A Polym. Chem., vol. 37, no. 15, p.2977–2989, (1999).

DOI: 10.1002/(sici)1099-0518(19990801)37:15<2977::aid-pola31>3.0.co;2-i

Google Scholar

[32] B. Priya and Et Al., Stimuli-responsive polymers and their applications in drug delivery, vol. 4, p.22001, (2009).

Google Scholar