[1]
H. Priya James, R. John, and A. Alex, Smart polymers for the controlled delivery of drugs – a concise overview, Acta Pharm. Sin. B, vol. 4, no. 2, p.120–127, (2014).
DOI: 10.1016/j.apsb.2014.02.005
Google Scholar
[2]
P. Bawa, V. Pillay, Y. E. Choonara, and L. C. du Toit, Stimuli-responsive polymers and their applications in drug delivery, Biomed. Mater., vol. 4, no. 22001, p.1–15, (2009).
DOI: 10.1088/1748-6041/4/2/022001
Google Scholar
[3]
E. Cabane, X. Zhang, K. Langowska, C. G. Palivan, and W. Meier, Stimuli-responsive polymers and their applications in nanomedicine, Biointerphases, vol. 7, no. 1–4, p.1–27, (2012).
DOI: 10.1007/s13758-011-0009-3
Google Scholar
[4]
M. Kumar et al., Mixture of PLA-PEG and biotinylated albumin enables immobilization of avidins on electrospun fibers, J. Biomed. Mater. Res. - Part A, vol. 105A, no. 105A, p.356–362, (2017).
DOI: 10.1002/jbm.a.35920
Google Scholar
[5]
Y. Ikada and H. Tsuji, Biodegradable polyesters for medical and ecological applications, Macromol. Rapid Commun., vol. 21, no. 3, p.117–132, (2000).
DOI: 10.1002/(sici)1521-3927(20000201)21:3<117::aid-marc117>3.0.co;2-x
Google Scholar
[6]
Y. Bai et al., Novel thermo- and pH-responsive hydroxypropyl cellulose- and poly (l-glutamic acid)-based microgels for oral insulin controlled release, Carbohydr. Polym., vol. 89, no. 4, p.1207–1214, (2012).
DOI: 10.1016/j.carbpol.2012.03.095
Google Scholar
[7]
J. Gao, G. Haidar, X. Lu, and Z. Hu, Self-association of hydroxypropylcellulose in water, Macromolecules, vol. 34, no. 7, p.2242–2247, (2001).
DOI: 10.1021/ma001631g
Google Scholar
[8]
D. Bielska et al., Self-organized thermo-responsive hydroxypropyl cellulose nanoparticles for curcumin delivery, Eur. Polym. J., vol. 49, no. 9, p.2485–2494, (2013).
DOI: 10.1016/j.eurpolymj.2013.02.012
Google Scholar
[9]
T. Wüstenberg, Cellulose and cellulose derivatives in the food industry. Wiley-VCH Verlag GmbH & Co. KGaA, (2015).
Google Scholar
[10]
M. Bikram and J. L. West, Thermo-responsive systems for controlled drug delivery, Taylor Fr., vol. 5, no. 10, p.1077–1091, (2008).
DOI: 10.1517/17425247.5.10.1077
Google Scholar
[11]
M. Shibayama and T. Tanaka, Volume phase transtition and related phenomena of polymer gels, Adv. Polym. Sci., vol. 109, p.1–62, (1993).
Google Scholar
[12]
S. Shukla, E. Brinley, H. J. Cho, and S. Seal, Electrospinning of hydroxypropyl cellulose fibers and their application in synthesis of nano and submicron tin oxide fibers, Polymer (Guildf)., vol. 46, no. 26, p.12130–12145, (2005).
DOI: 10.1016/j.polymer.2005.10.070
Google Scholar
[13]
V. Periasamy, K. Devarayan, M. Hachisu, J. Araki, and K. Ohkawa, Chemical Modifications of Electrospun Non-woven Hydroxypropyl Cellulose Fabrics for Immobilization of Aminoacylase-I, J. Fiber Bioeng. Informatics, vol. 5, no. 2, p.191–205, (2012).
DOI: 10.3993/jfbi06201208
Google Scholar
[14]
L. Francis, A. Balakrishnan, K. P. Sanosh, and E. Marsano, Characterization and tensile strength of HPC–PEO composite fibers produced by electrospinning, (2010).
DOI: 10.1016/j.matlet.2010.05.043
Google Scholar
[15]
D. Chen and B. Sun, New tissue engineering material copolymers of derivatives of cellulose and lactide: their synthesis and characterization, Mater. Sci. Eng. C, vol. 11, no. 1, p.57–60, (2000).
DOI: 10.1016/s0928-4931(00)00131-4
Google Scholar
[16]
A. Gutowska, Y. H. Bae, H. Jacobs, S. W. Kim, and J. Feijen, Thermosensitive Interpenetrating Polymer Networks: Synthesis, Characterization, and Macromolecular Release, Macromolecules, vol. 27, no. 15, p.4167–4175, (1994).
DOI: 10.1021/ma00093a018
Google Scholar
[17]
M. Carenza, F. Martellini, H. I. Mei, and J. L. Bali, Water and drug transport in radiation-crosslinked poly ( 2-methoxyethylacrylate- co -dimethyl acrylamide ) and poly ( 2-methoxyethylacrylate- co -acrylamide ) hydrogels, Radiat. Phys. Chem., vol. 66, p.155–159, (2003).
DOI: 10.1016/s0969-806x(02)00283-9
Google Scholar
[18]
K. Rao, K. Rao, and C. -S. Ha, Stimuli Responsive Poly(Vinyl Caprolactam) Gels for Biomedical Applications, Gels, vol. 2, no. 1, p.6, (2016).
DOI: 10.3390/gels2010006
Google Scholar
[19]
L. Li, X. Jiang, and R. Zhuo, Synthesis and Characterization of Thermoresponsive Polymers Containing Reduction-Sensitive Disulfide Linkage, J. Polym. Sci., vol. 47, p.5989–5997, (2009).
DOI: 10.1002/pola.23642
Google Scholar
[20]
K. B. Doorty et al., Poly(N-isopropylacrylamide) co-polymer films as potential vehicles for delivery of an antimitotic agent to vascular smooth muscle cells, Cardiovasc. Pathol., vol. 12, no. 2, p.105–110, Mar. (2003).
DOI: 10.1016/s1054-8807(02)00165-5
Google Scholar
[21]
M. Nakayama, T. Okano, T. Miyazaki, F. Kohori, K. Sakai, and M. Yokoyama, Molecular design of biodegradable polymeric micelles for temperature-responsive drug release, J. Control. Release, vol. 115, no. 1, p.46–56, (2006).
DOI: 10.1016/j.jconrel.2006.07.007
Google Scholar
[22]
D. Y. Furgeson, M. R. Dreher, and A. Chilkoti, Structural optimization of a 'smart' doxorubicin-polypeptide conjugate for thermally targeted delivery to solid tumors, J. Control. Release, vol. 110, no. 2, p.362–369, (2006).
DOI: 10.1016/j.jconrel.2005.10.006
Google Scholar
[23]
M. Chen, Y. F. Li, and F. Besenbacher, Electrospun Nanofibers-Mediated On-Demand Drug Release, Adv. Healthc. Mater., vol. 3, no. 11, p.1721–1732, (2014).
DOI: 10.1002/adhm.201400166
Google Scholar
[24]
Z. M. Huang, Y. Z. Zhang, M. Kotaki, and S. Ramakrishna, A review on polymer nanofibers by electrospinning and their applications in nanocomposites, Compos. Sci. Technol., vol. 63, no. 15, p.2223–2253, (2003).
DOI: 10.1016/s0266-3538(03)00178-7
Google Scholar
[25]
M. Kumar, D. Unruh, R. Sindelar, and F. Renz, Preparation of Magnetic Polylactic Acid Fiber Mats by Electrospinning, Nano Hybrids Compos., vol. 14, p.39–47, (2017).
DOI: 10.4028/www.scientific.net/nhc.14.39
Google Scholar
[26]
M. Kumar et al., Electrospinning synthesis and characterization of PLA-PEG-MNPs composite fibrous membranes, Hyperfine Interact., vol. 238, no. 1, p.66, (2017).
DOI: 10.1007/s10751-017-1435-5
Google Scholar
[27]
E. R. Kenawy et al., Release of tetracycline hydrochloride from electrospun poly(ethylene-co-vinylacetate), poly(lactic acid), and a blend, J. Control. Release, vol. 81, no. 1–2, p.57–64, (2002).
DOI: 10.1016/s0168-3659(02)00041-x
Google Scholar
[28]
K. A. Heitfeld, T. Guo, G. Yang, and D. W. Schaefer, Temperature responsive hydroxypropyl cellulose for encapsulation, Mater. Sci. Eng. C, vol. 28, no. 3, p.374–379, (2008).
DOI: 10.1016/j.msec.2007.04.012
Google Scholar
[29]
M. Shibayama and T. Tanaka, Volume phase transition and related phenomena of polymer gels, in Responsive Gels: Volume Transitions I, K. Dušek, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993, p.1–62.
DOI: 10.1007/3-540-56791-7_1
Google Scholar
[30]
X. Lu, Z. Hu, and J. Gao, Synthesis and light scattering study of hydroxypropyl cellulose microgels, Macromolecules, vol. 33, no. 23, p.8698–8702, (2000).
DOI: 10.1021/ma000776k
Google Scholar
[31]
T. Baltes, F. Garret-Flaudy, and R. Freitag, Investigation of the LCST of polyacrylamides as a function of molecular parameters and the solvent composition, J. Polym. Sci. Part A Polym. Chem., vol. 37, no. 15, p.2977–2989, (1999).
DOI: 10.1002/(sici)1099-0518(19990801)37:15<2977::aid-pola31>3.0.co;2-i
Google Scholar
[32]
B. Priya and Et Al., Stimuli-responsive polymers and their applications in drug delivery, vol. 4, p.22001, (2009).
Google Scholar