Advancements in Properties of Cement Containing Pulverised Fly Ash and Nanomaterials by Blending and Ultrasonication Method (Review - Part I)

Article Preview

Abstract:

This review research aims to discuss the results obtained researches on cement containing pure cement, pulverised fly ash, and nanoparticles, in order for eliminating negative side effects underlie the substitution of by–products for pure Portland cement. Nanoparticles (NP) used in these researches are nanoTiO2, nanoSiO2, nanoCaCO3, fibers of carbon nano tube (CNT), nanolimestone (nanoCaCO3), nanoZrO2, nanoclays, and nanometakaolin (nMK) for improving properties of cement systems. Published manuscripts explains two methods regarding on the usage of nanoparticles for cement system: blending and ultrasonication for dispersion of nanoparticles. However, differences between blending and ultrasonication methods suggested by various researchers are also discussed. Experiments reported these papers include the water demand, the density, the setting–times, the heat of hydration, the fluidity, the compressive strength and the flexural strength. According to these results, nanoparticles increase the water demand and heat of hydration of cement; it decreases the density and fluidity for cement mortars, evidently. The most effective nanoparticles on early compressive and flexural strengths are fibers of carbon nano tube and nanoCaCO3. These papers also point effects of these nanoparticles on the strength gain of cement. This review paper inform us until Effect of nanomaterial on water demand and density section in this Part I. Second part of this review paper will explain Hydration properties of Portland pulverised fly ash cement section, Effect of nanomaterial on setting–time section, Effect of nanomaterial on heat of hydration section, Strength gain mechanisms for hardened Portland pulverised fly ash cement paste and mortar section, Effect of nanomaterial on compressive strength section, Effect of nanomaterial on flexural strength (Bending) section, and Conclusion section.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1-11

Citation:

Online since:

February 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Aly, M., Hashmia, M.S.J., Olabia, A.G., Messeiryb, M., Hussainc, A.I. (2011). Effect of nano clay particles on mechanical, thermal and physical behaviours of waste-glass cement mortars." Journal of Materials Science and Engineering A, Vol. 528, No. 27, p.7991–7998.

DOI: 10.1016/j.msea.2011.07.058

Google Scholar

[2] ASTM C1437–07 (2001). Standard Test Method for Flow of Hydraulic Cement Mortar, West Conshohocken: ASTM International, PA, USA.

Google Scholar

[3] ASTM C150–05 (2005). Standard Specification for Portland Cement, West Conshohocken: ASTM International, PA, USA.

Google Scholar

[4] ASTM C186–05 (1998). Standard Test Method for Heat of Hydration of Hydraulic Cement, West Conshohocken: ASTM International, PA, USA.

Google Scholar

[5] ASTM C191–08 (2007). Standard Test Methods for Time of Setting of Hydraulic Cement by Vicat Needle, West Conshohocken: ASTM International, PA, USA.

Google Scholar

[6] ASTM C348–02 (2002). Standard Test Method for Flexural Strength of Hydraulic-Cement Mortars, West Conshohocken: ASTM International, PA, USA.

Google Scholar

[7] ASTM C349–08 (2002). Standard Test Method for Compressive Strength of Hydraulic Cement Mortars, West Conshohocken: ASTM International, PA, USA.

Google Scholar

[8] ASTM C593–95 (2000). Standard Specification for Fly Ash and Other Pozzolans for Use with Lime, West Conshohocken: ASTM International, PA, USA.

Google Scholar

[9] ASTM C618–12a (2001). Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete, West Conshohocken: ASTM International, PA, USA.

DOI: 10.1520/c0618-15

Google Scholar

[10] Bagheri, A., Parhizkar, T., Madani, H., Raisghasemi, A.M. (2013). The influence of different preparation methods on the aggregation status of pyrogenic nanosilicas used in concrete., Materials and Structures, Vol. 46, No.1–2, pp.135-143.

DOI: 10.1617/s11527-012-9889-z

Google Scholar

[11] Bentz, D.P., Sato, T., de la Varga, I., Weiss, W.J. (2012). Fine limestone additions to regulate setting in high volume fly ash mixtures., Cement and Concrete Composites, Vol. 34, No.1, p.11–17.

DOI: 10.1016/j.cemconcomp.2011.09.004

Google Scholar

[12] Björnström, J., Martinelli, A., Matic, A., Börjesson, L., Panas, I. (2004). Accelerating effects of colloidal nano-silica for beneficial calcium–silicate–hydrate formation in cement., Chemical Physics Letters, Vol. 392, No.1, p.242–248.

DOI: 10.1016/j.cplett.2004.05.071

Google Scholar

[13] Bonavetti, V.L., Rahhal, V.F., Irassar, E.F. (2001). Studies on the carboaluminate formation in limestone filler-blended cements., Cement and Concrete Research, Vol. 31, No.6, pp.853-859.

DOI: 10.1016/s0008-8846(01)00491-4

Google Scholar

[14] Camiletti, J., Soliman, A.M., Nehdi, M.L. (2013). Effects of nano- and micro-limestone addition on early-age properties of ultra-high-performance concrete., Materials and Structures, Vol. 46, No.6, pp.881-898.

DOI: 10.1617/s11527-012-9940-0

Google Scholar

[15] Chang, T-P., Shih, J-Y., Yang, K-M., Hsiao, T-C. (2007). Material properties of Portland cement paste with nano-montmorillonite., Materials Structures, Vol.42, No. 17, p.7478–7487.

DOI: 10.1007/s10853-006-1462-0

Google Scholar

[16] Chen, J., Kou, S-c., Poon, C-s. (2012). Hydration and properties of nano-TiO2 blended cement composites., Journal of Cement and Concrete Composites, Vol. 34, p.642–649.

DOI: 10.1016/j.cemconcomp.2012.02.009

Google Scholar

[17] Ferron, R. (2008).

Google Scholar

[18] Ghrici, M., Kenai, S., Said-Mansour, M. (2007). Mechanical properties and durability of mortar and concrete containing natural pozzolana and limestone blended cements., Cement and Concrete Composites, Vol.29, No.7, pp.542-549.

DOI: 10.1016/j.cemconcomp.2007.04.009

Google Scholar

[19] Gündoğdu, D., Pekmezci, B.Y., Atahan, H.N. (2010).

Google Scholar

[20] Heikal, M., El-Didamony, H., Morsy, M.S. (2000). Limestone-filled pozzolanic cement, Cement and Concrete Research Vol. 30, No.11, pp.1827-1834.

DOI: 10.1016/s0008-8846(00)00402-6

Google Scholar

[21] Hosseinpourpia, R., Varshoee, A., Soltani, M., Hosseini, P., Tabari, H.Z. (2012). Production of waste bio-fiber cement-based composites reinforced with nano-SiO2 particles as a substitute for asbestos cement composites., Construction and Building Materials, Vol. 31, p.105–111.

DOI: 10.1016/j.conbuildmat.2011.12.102

Google Scholar

[22] Hou, P., Kawashima, S., Kong, D., Corr, D.J., Qian, J., Shah, S.P. (2013). Modification effects of colloidal nanoSiO2 on cement hydration and its gel property., Journal of Composites Part B, Vol. 45, p.440–448.

DOI: 10.1016/j.compositesb.2012.05.056

Google Scholar

[23] Hou, P., Wang, K., Qian, J., Kawashima, S., Kong, D., Shah S. P. (2012). Effects of colloidal nanoSiO2 on fly ash hydration., Cement and Concrete Composites, Vol.34, No.10, pp.1095-1103.

DOI: 10.1016/j.cemconcomp.2012.06.013

Google Scholar

[24] Irassar, E.F., González, M., Rahhal, V. (2000). Sulphate resistance of type V cements with limestone filler and natural pozzolana., Cement and Concrete Compıosites, Vol. 22, No.5 p.361–368.

DOI: 10.1016/s0958-9465(00)00019-6

Google Scholar

[25] Jalal, M., Fathi, M., Farzad, M. (2013). "Effects of fly ash and TiO2 nanoparticles on rheological, mechanical, microstructural and thermal properties of high strength self compacting concrete, Mechanics of Materials, Vol. 61, p.11–27.

DOI: 10.1016/j.mechmat.2013.01.010

Google Scholar

[26] Jayapalan, A. R., Lee, B. Y. Fredrich, S.M. Kurtis, K.E. (2010). Influence of additions of AnataseTiO2 nanoparticles on early-age properties of cement-based materials., Journal of Transportation Research Board, Vol.2141, p.41–46.

DOI: 10.3141/2141-08

Google Scholar

[27] Ji, T. (2005). Preliminary study on the water permeability and microstructure of concrete incorporating nano-SiO2., Cement and Concrete Research, Vol.35, No.10, pp.1943-1947.

DOI: 10.1016/j.cemconres.2005.07.004

Google Scholar

[28] Jo, B-W., Kim, C. H., Tae, G.H., Park, J.B. (2007). Characteristics of cement mortar with nano-SiO2 particles., Construction and Building Materials, Vol. 21, No.6, p.1351–1355.

DOI: 10.1016/j.conbuildmat.2005.12.020

Google Scholar

[29] Kakali, G., Tsivilis, S., Aggeli, E., Bati, M. (2000). Hydration products of C3A, C3S and Portland cement in the presence of CaCO3., Cement and Concrete Research, Vol. 30, No.7, pp.1073-1077.

DOI: 10.1016/s0008-8846(00)00292-1

Google Scholar

[30] Kawashima, S., Hou, P., Corr, D.J., Shah, S.P. (2013). Modification of cement-based materials with nanoparticles., Journal of Cement and Concret Composites, Vol. 36, p.8–15.

DOI: 10.1016/j.cemconcomp.2012.06.012

Google Scholar

[31] Kawashima, S., Kim, J.H., Corr, D., Shah, S.P. (2012). Study of the mechanisms underlying the fresh-state response of cementitious materials modified with nanoclays., Construction and Building Materials, Vol. 36, p.749–757.

DOI: 10.1016/j.conbuildmat.2012.06.057

Google Scholar

[32] Kim, J.H., Beacraft, M., Shah, S.P. (2010). Effect of mineral admixtures on formwork pressure of self-consolidating concrete., Cement and Concrete Composites, Vol.32, No.9, p.665–671.

DOI: 10.1016/j.cemconcomp.2010.07.018

Google Scholar

[33] Kim, J.H., Noemi, N., Shah, S.P. (2012). Effect of powder materials on the rheology and formwork pressure of self-consolidating concrete., Cement and Concrete Composites, Vol. 34, No.6, pp.746-753.

DOI: 10.1016/j.cemconcomp.2012.02.016

Google Scholar

[34] Kırgız, M.S. (2014). Advances in physical properties of C class fly ash–cement systems blended nanographite (Part 1)., ZKG International, No.12, p.42–48, (2014).

Google Scholar

[35] Kırgız, M.S. (2015a). Advances in physical properties of C class fly ash–cement systems blended nanographite (Part 2)., ZKG International, No.1-2, p.60–67.

Google Scholar

[36] Kırgız, M.S. (2015b). Use of ultrafine marble and brick particles as raw materials in cement manufacturing., Materials and Structures, Vol. 48, No. 9, p.2929–2941.

DOI: 10.1617/s11527-014-0368-6

Google Scholar

[37] Kırgız, M.S. (2015c). Supernatant Nanographite Solution for Advance Treatment of C Class Fly Ash–Cement Systems (Part 2)., ZKG International, No. 5, p.42–47, (2015).

Google Scholar

[38] Kırgız, M.S. (2015d). Supernatant Nanographite Solution for Advance Treatment of C Class Fly Ash–Cement Systems (Part 1)., ZKG International, No. 4, p.56–65.

Google Scholar

[39] Kırgız, M.S. (2016a). Fresh and Hardened Properties of Green Binder Concrete Containing Marble Powder and Brick Powder., European Journal of Environmental and Civil Engineering, Issue Sup1: Supplement: Green Binder Materials for Civil Engineering and Architecture Applications, Vol. 20, pp.64-101.

DOI: 10.1080/19648189.2016.1246692

Google Scholar

[40] Kırgız, M.S. (2016b). Strength Gain Mechanism for Green Mortar Substituted Marble Powder and Brick Powder for Portland Cement., European Journal of Environmental and Civil Engineering, Issue Sup1: Supplement: Green Binder Materials for Civil Engineering and Architecture Applications, Vol. 20, pp.38-63.

DOI: 10.1080/19648189.2016.1246691

Google Scholar

[41] Kong, D., Du, X., Wei, S., Zhang, H., Yang, Y., Shah, S.P. (2012). Influence of nano-silica agglomeration on microstructure and properties of the hardened cement-based materials., Construction and Building Materials, Vol. 37, p.707–715.

DOI: 10.1016/j.conbuildmat.2012.08.006

Google Scholar

[42] Kong, D., Su, Y., Du, X., Yang, Y., Wei, S., Shah, S.P. (2013). Influence of nano-silica agglomeration on fresh properties of cement pastes., Journal of Construction and Building Materials, Vol. 43, p.557–562.

DOI: 10.1016/j.conbuildmat.2013.02.066

Google Scholar

[43] Konsta-Gdoutos, M.S., Metaxa, Z.S., Shah, S.P. (2010). Highly dispersed carbon nanotube reinforced cement based materials., Cement and Concrete Research, Vol.40, No.7, p.1052–1059.

DOI: 10.1016/j.cemconres.2010.02.015

Google Scholar

[44] Konsta-Gdoutos, M.S., Metaxa, Z.S., Shah, S.P. (2010). Multi-scale mechanical and fracture characteristics and early-age strain capacity of high performance carbon nanotube/cement nanocomposites., Journal of Cement and Concrete Composites, Vol. 32, No. 2, p.110–115.

DOI: 10.1016/j.cemconcomp.2009.10.007

Google Scholar

[45] Li, G. (2004). "Properties of high-volume fly ash concrete incorporating nano-SiO2, Journal of Cement and Concrete Research, Vol. 34, No.6, p.1043–1049.

DOI: 10.1016/j.cemconres.2003.11.013

Google Scholar

[46] Li, H., Xiao, H.G., Ou, J.P. (2004). A study on mechanical and pressure-sensitive properties of cement mortar with nanophase materials., Cement Concrete Reseacrh, Vol.34, No.3, p.435–438.

DOI: 10.1016/j.cemconres.2003.08.025

Google Scholar

[47] Li, H., Xiao, H-g., Yuan, J., Ou, J. (2004). Microstructure of cement mortar with nano-particles., Journal of Composites Part B, Vol. 35, p.185–189.

DOI: 10.1016/s1359-8368(03)00052-0

Google Scholar

[48] Li, Z., Wang, H., He, S., Lu, Y., Wang, M. (2006). Investigations on the preparation and mechanical properties of the nano-alumina reinforced cement composite., Materials Letter, Vol. 60, No.3, p.356–359.

DOI: 10.1016/j.matlet.2005.08.061

Google Scholar

[49] Lin, D.F., Lin, K.L., Chang, W.C., Luo, H.L., Cai, M.Q. (2008). Improvements of nano-SiO2 on sludge/fly ash mortar., Waste Mangement, Vol. 28, No.6, p.1081–1087.

DOI: 10.1016/j.wasman.2007.03.023

Google Scholar

[50] Lin, K.L., Chang, W.C., Lin, D.F., Luo, H.L., Tsai, M.C. (2008). Effects of nano-SiO2 and different ash particle sizes on sludge ash–cement mortar., Journal of Environmental Management, Vol. 88, No. 4, p.708–714.

DOI: 10.1016/j.jenvman.2007.03.036

Google Scholar

[51] Liu, X., Chen, L., Liu A., Wang, X. (2012). Effect of nano-CaCO3 on properties of cement paste., Energy Procedia, Vol. 16, p.991–996.

DOI: 10.1016/j.egypro.2012.01.158

Google Scholar

[52] Lothenbach, B., Le Saout, G., Gallucci, E., Scrivener, K. (2008). Influence of limestone on the hydration of Portland cements., Cement and Concrete Research, Vol. 38, No.6, pp.848-860.

DOI: 10.1016/j.cemconres.2008.01.002

Google Scholar

[53] Ltifi, M., Guefrech, A., Mounanga, P., Khelidj, A. (2011). Experimental study of the effect of addition of nano-silica on the behaviour of cement mortars., Procedia Engineering, Vol. 10, p.900–905.

DOI: 10.1016/j.proeng.2011.04.148

Google Scholar

[54] Makar J. (2011). The Effect of SWCNT and Other Nanomaterials on Cement Hydration and Reinforcement, Nanotechnology in Civil Infrastructure, Eds: K. Gopalakrishnan, B. Birgisson, P. Taylor and N. Attoh-Okine, Springer, pp.103-130.

DOI: 10.1007/978-3-642-16657-0_4

Google Scholar

[55] Meng, T., Yu, Y., Qian, X., Zhan, S., Qian, K. (2012). Effect of nano-TiO2 on the mechanical properties of cement mortar., Journal of Construction and Building Materials, Vol. 29, p.241–245.

DOI: 10.1016/j.conbuildmat.2011.10.047

Google Scholar

[56] Metaxa, Z.S., Seo, J-W.T., Konsta-Gdoutos, M.S., Hersam, M.C., Shah, S.P. (2012). Highly concentrated carbon nanotube admixture for nano-fiber reinforced cementitious materials., Journal of Cement and Concrete Composites, Vol.34, No. 5, p.612–617.

DOI: 10.1016/j.cemconcomp.2012.01.006

Google Scholar

[57] Morsy, M.S., Al-Salloum, Y.A., Abbas, H., Alsayed, S.H. (2012). Behavior of blended cement mortars containing nano-metakaolin at elevated temperatures., Construction and Building Materials, Vol. 35, p.900–905.

DOI: 10.1016/j.conbuildmat.2012.04.099

Google Scholar

[58] Morsy, M.S., Alsayed, S.H., Aqel, M. (2011). Hybrid effect of carbon nanotube and nano-clay on physico-mechanical properties of cement mortar., Construction and Building Materials, Vol. 25, p.145–149.

DOI: 10.1016/j.conbuildmat.2010.06.046

Google Scholar

[59] Nazari, A., Riahi, S. (2011). The effects of SiO2 nanoparticles on physical and mechanical properties of high strength compacting concrete., Journal of Composites Part B: Engineering, Vol. 42, No.3, p.570–578.

DOI: 10.1016/j.compositesb.2010.09.025

Google Scholar

[60] Nazari, A., Riahi, S. (2011). The effects of zinc dioxide nanoparticles on flexural strength of self-compacting concrete., Journal of Composites Part B: Engineering, Vol. 42, No. 2, p.167–75.

DOI: 10.1016/j.compositesb.2010.09.001

Google Scholar

[61] Nochaiya, T., Chaipanich, A. (2010). Behavior of multi-walled carbon nanotubes on the porosity and microstructure of cement-based materials., Applied Surface Science, Vol. 257, No.6, p.1941–1945.

DOI: 10.1016/j.apsusc.2010.09.030

Google Scholar

[62] Oltulu, M., Sahin, R. (2013). Effect of nano-SiO2, nano-Al2O3 and nano-Fe2O3 powders on compressive strengths and capillary water absorption of cement mortar containing fly ash: A comparative study., Energy and Buildings, Vol. 58, p.292–301.

DOI: 10.1016/j.enbuild.2012.12.014

Google Scholar

[63] Pekmezci, B.Y., Voigt, T., Kejin, W., Shah, S.P. (2007). Low compaction energy concrete for improved slipform casting of concrete pavements., ACI Materials, Vol. 104, No.3, p.251–258.

DOI: 10.14359/18670

Google Scholar

[64] Péra, J., Husson, S., Guilhot, B. (1999). Influence of finely ground limestone on cement hydration., Cement and Concrete Composites, Vol. 21, No. 2, pp.99-105.

DOI: 10.1016/s0958-9465(98)00020-1

Google Scholar

[65] Pourjavadi, A., Fakoorpoor, S. M., Khaloo, A., Hosseini, P. (2012). Improving the performance of cement-based composites containing superabsorbent polymers by utilization of nano-SiO2 particles., Materials and Design, Vol.42, p.94–101.

DOI: 10.1016/j.matdes.2012.05.030

Google Scholar

[66] Qing, Y., Zenan, Z., Deyu, K., Rongshen, C. (2007). Influence of nano-SiO2 addition on properties of hardened cement paste as compared with silica fume., Construction and Building Materials, Vol. 21, No. 3, p.539–545.

DOI: 10.1016/j.conbuildmat.2005.09.001

Google Scholar

[67] Quercia, G., Hüsken, G., Brouwers, H.J.H. (2012). Water demand of amorphous nano silica and its impact on the workability of cement paste., Cement and Concrete Research, Vol. 42, p.344–357.

DOI: 10.1016/j.cemconres.2011.10.008

Google Scholar

[68] Sato, T., Beaudoin, J. (2010) Effect of nano-CaCO3 on hydration of cement containing supplementary cementitious materials., Advences in Cement Research, Vol. 23, No.1, pp.33-43.

DOI: 10.1680/adcr.9.00016

Google Scholar

[69] Sato, T., Beaudoin, J.J. (2006). The effect of nano-sized CaCO3 addition on the hydration of OPC containing high volumes of fly ash., Proc., 12th Int. Congr., on the Chemistry of Cement, Montreal, Canada, p.1–12.

Google Scholar

[70] Sato, T., Diallo, F. (2010). Seeding effect of nano-CaCO3 on the hydration of tricalcium silicate., Journal of Transportation Research Board, Vol. 2141, p.61–67.

DOI: 10.3141/2141-11

Google Scholar

[71] Senff, L., Hotza, D., Lucas, S., Ferreira, V.M., Labrincha, J.A. (2012). Effect of nano-SiO2 and nano-TiO2 addition on the rheological behavior and the hardened properties of cement mortars., Journal of Materials Science and Engineering A, Vol. 532, p.354–361.

DOI: 10.1016/j.msea.2011.10.102

Google Scholar

[72] Senff, L., Labrincha, J. A., Ferreira, V. M., Hotza, D., Repette, W. L. (2009). Effect of nano-silica on rheology and fresh properties of cement pastes and mortars., Construction and Building Materials, Vol. 23, No.7, p.2487–249.

DOI: 10.1016/j.conbuildmat.2009.02.005

Google Scholar

[73] Shih, J-Y., Chang, T-P. Hsiao, T-C. (2006). Effect of nanosilica on characterization of Portland cement composite., Journal of Materials Science and Engineering: A, Vol.424, No.1, p.266–274.

DOI: 10.1016/j.msea.2006.03.010

Google Scholar

[74] Sobolev, K., Flores, I., Torres-Martinez, L.M., Valdez, P.L., Zarazua, E., Cuellar, E.L. (2009).

Google Scholar

[75] Stefanidou, M., Papayianni, I. (2012). Influence of nano-SiO2 on the Portland cement pastes., Journal of Composites Part B, Vol. 43, p.2706–2710.

DOI: 10.1016/j.compositesb.2011.12.015

Google Scholar

[76] Tregger, N. (2010). Tailoring the fresh state of concrete., PhD Thesis, Northwestern University Civil and Environmental Engineering, 60201 Evanston, IL, USA.

Google Scholar

[77] Tregger, N., Voigt, T., Shah, S. P. (2007). Improving the slipform process via material manipulation, Eds: Grosse CU, Advences in Construction Materials, Springer, Berlin Heidelberg, p.539–546.

DOI: 10.1007/978-3-540-72448-3_55

Google Scholar

[78] Tregger, N.A., Pakula, M.E., Shah, S.P. (2010). Influence of clays on the rheology of cement pastes., Cement and Concrete Research, Vol. 40, No. 3, p.384–391.

DOI: 10.1016/j.cemconres.2009.11.001

Google Scholar

[79] Voigt, T., Mbele, J.J., Wang, K., Shah, S.P. (2010). Using fly ash, clay, and fibers for simultaneous improvement of concrete green strength and consolidatability for slip-form pavement., Journal of Materials in Civil Engineering, Vol. 22, No.2, p.196–206.

DOI: 10.1061/(asce)0899-1561(2010)22:2(196)

Google Scholar

[80] Yousefi, A., Allahverdi, A., Hejazi, P. (2013). Effective dispersion of nano-TiO2 powder for enhancement of photocatalytic properties in cement mixes., Journal of Construction and Building Materials, Vol. 41, p.224–230.

DOI: 10.1016/j.conbuildmat.2012.11.057

Google Scholar

[81] Yuan, Z.C., Guo, W.J. (1987). Bond between marble and cement paste., Cement and Concrete Research, Vol. 17, No. 4, p.544–552.

DOI: 10.1016/0008-8846(87)90127-x

Google Scholar

[82] Zegetosky, C., Özyıldırım, C. (2010). Exploratory Investigation of Nanomaterials to Improve Strength and Permeability of Concrete., Journal of the Transportation Research Board, Vol. 2142, No.1, p.1–8, DOI.

DOI: 10.3141/2142-01

Google Scholar

[83] Zhang, M-H., Islam, J., Peethamparan, S. (2012). Use of nano-silica to increase early strength and reduce setting time of concretes with high volumes of slag., Cement and Concrete Composites, Vol. 34, p.650–662.

DOI: 10.1016/j.cemconcomp.2012.02.005

Google Scholar