[1]
Aly, M., Hashmia, M.S.J., Olabia, A.G., Messeiryb, M., Hussainc, A.I. (2011). Effect of nano clay particles on mechanical, thermal and physical behaviours of waste-glass cement mortars." Journal of Materials Science and Engineering A, Vol. 528, No. 27, p.7991–7998.
DOI: 10.1016/j.msea.2011.07.058
Google Scholar
[2]
ASTM C1437–07 (2001). Standard Test Method for Flow of Hydraulic Cement Mortar, West Conshohocken: ASTM International, PA, USA.
Google Scholar
[3]
ASTM C150–05 (2005). Standard Specification for Portland Cement, West Conshohocken: ASTM International, PA, USA.
Google Scholar
[4]
ASTM C186–05 (1998). Standard Test Method for Heat of Hydration of Hydraulic Cement, West Conshohocken: ASTM International, PA, USA.
Google Scholar
[5]
ASTM C191–08 (2007). Standard Test Methods for Time of Setting of Hydraulic Cement by Vicat Needle, West Conshohocken: ASTM International, PA, USA.
Google Scholar
[6]
ASTM C348–02 (2002). Standard Test Method for Flexural Strength of Hydraulic-Cement Mortars, West Conshohocken: ASTM International, PA, USA.
Google Scholar
[7]
ASTM C349–08 (2002). Standard Test Method for Compressive Strength of Hydraulic Cement Mortars, West Conshohocken: ASTM International, PA, USA.
Google Scholar
[8]
ASTM C593–95 (2000). Standard Specification for Fly Ash and Other Pozzolans for Use with Lime, West Conshohocken: ASTM International, PA, USA.
Google Scholar
[9]
ASTM C618–12a (2001). Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete, West Conshohocken: ASTM International, PA, USA.
DOI: 10.1520/c0618-15
Google Scholar
[10]
Bagheri, A., Parhizkar, T., Madani, H., Raisghasemi, A.M. (2013). The influence of different preparation methods on the aggregation status of pyrogenic nanosilicas used in concrete., Materials and Structures, Vol. 46, No.1–2, pp.135-143.
DOI: 10.1617/s11527-012-9889-z
Google Scholar
[11]
Bentz, D.P., Sato, T., de la Varga, I., Weiss, W.J. (2012). Fine limestone additions to regulate setting in high volume fly ash mixtures., Cement and Concrete Composites, Vol. 34, No.1, p.11–17.
DOI: 10.1016/j.cemconcomp.2011.09.004
Google Scholar
[12]
Björnström, J., Martinelli, A., Matic, A., Börjesson, L., Panas, I. (2004). Accelerating effects of colloidal nano-silica for beneficial calcium–silicate–hydrate formation in cement., Chemical Physics Letters, Vol. 392, No.1, p.242–248.
DOI: 10.1016/j.cplett.2004.05.071
Google Scholar
[13]
Bonavetti, V.L., Rahhal, V.F., Irassar, E.F. (2001). Studies on the carboaluminate formation in limestone filler-blended cements., Cement and Concrete Research, Vol. 31, No.6, pp.853-859.
DOI: 10.1016/s0008-8846(01)00491-4
Google Scholar
[14]
Camiletti, J., Soliman, A.M., Nehdi, M.L. (2013). Effects of nano- and micro-limestone addition on early-age properties of ultra-high-performance concrete., Materials and Structures, Vol. 46, No.6, pp.881-898.
DOI: 10.1617/s11527-012-9940-0
Google Scholar
[15]
Chang, T-P., Shih, J-Y., Yang, K-M., Hsiao, T-C. (2007). Material properties of Portland cement paste with nano-montmorillonite., Materials Structures, Vol.42, No. 17, p.7478–7487.
DOI: 10.1007/s10853-006-1462-0
Google Scholar
[16]
Chen, J., Kou, S-c., Poon, C-s. (2012). Hydration and properties of nano-TiO2 blended cement composites., Journal of Cement and Concrete Composites, Vol. 34, p.642–649.
DOI: 10.1016/j.cemconcomp.2012.02.009
Google Scholar
[17]
Ferron, R. (2008).
Google Scholar
[18]
Ghrici, M., Kenai, S., Said-Mansour, M. (2007). Mechanical properties and durability of mortar and concrete containing natural pozzolana and limestone blended cements., Cement and Concrete Composites, Vol.29, No.7, pp.542-549.
DOI: 10.1016/j.cemconcomp.2007.04.009
Google Scholar
[19]
Gündoğdu, D., Pekmezci, B.Y., Atahan, H.N. (2010).
Google Scholar
[20]
Heikal, M., El-Didamony, H., Morsy, M.S. (2000). Limestone-filled pozzolanic cement, Cement and Concrete Research Vol. 30, No.11, pp.1827-1834.
DOI: 10.1016/s0008-8846(00)00402-6
Google Scholar
[21]
Hosseinpourpia, R., Varshoee, A., Soltani, M., Hosseini, P., Tabari, H.Z. (2012). Production of waste bio-fiber cement-based composites reinforced with nano-SiO2 particles as a substitute for asbestos cement composites., Construction and Building Materials, Vol. 31, p.105–111.
DOI: 10.1016/j.conbuildmat.2011.12.102
Google Scholar
[22]
Hou, P., Kawashima, S., Kong, D., Corr, D.J., Qian, J., Shah, S.P. (2013). Modification effects of colloidal nanoSiO2 on cement hydration and its gel property., Journal of Composites Part B, Vol. 45, p.440–448.
DOI: 10.1016/j.compositesb.2012.05.056
Google Scholar
[23]
Hou, P., Wang, K., Qian, J., Kawashima, S., Kong, D., Shah S. P. (2012). Effects of colloidal nanoSiO2 on fly ash hydration., Cement and Concrete Composites, Vol.34, No.10, pp.1095-1103.
DOI: 10.1016/j.cemconcomp.2012.06.013
Google Scholar
[24]
Irassar, E.F., González, M., Rahhal, V. (2000). Sulphate resistance of type V cements with limestone filler and natural pozzolana., Cement and Concrete Compıosites, Vol. 22, No.5 p.361–368.
DOI: 10.1016/s0958-9465(00)00019-6
Google Scholar
[25]
Jalal, M., Fathi, M., Farzad, M. (2013). "Effects of fly ash and TiO2 nanoparticles on rheological, mechanical, microstructural and thermal properties of high strength self compacting concrete, Mechanics of Materials, Vol. 61, p.11–27.
DOI: 10.1016/j.mechmat.2013.01.010
Google Scholar
[26]
Jayapalan, A. R., Lee, B. Y. Fredrich, S.M. Kurtis, K.E. (2010). Influence of additions of AnataseTiO2 nanoparticles on early-age properties of cement-based materials., Journal of Transportation Research Board, Vol.2141, p.41–46.
DOI: 10.3141/2141-08
Google Scholar
[27]
Ji, T. (2005). Preliminary study on the water permeability and microstructure of concrete incorporating nano-SiO2., Cement and Concrete Research, Vol.35, No.10, pp.1943-1947.
DOI: 10.1016/j.cemconres.2005.07.004
Google Scholar
[28]
Jo, B-W., Kim, C. H., Tae, G.H., Park, J.B. (2007). Characteristics of cement mortar with nano-SiO2 particles., Construction and Building Materials, Vol. 21, No.6, p.1351–1355.
DOI: 10.1016/j.conbuildmat.2005.12.020
Google Scholar
[29]
Kakali, G., Tsivilis, S., Aggeli, E., Bati, M. (2000). Hydration products of C3A, C3S and Portland cement in the presence of CaCO3., Cement and Concrete Research, Vol. 30, No.7, pp.1073-1077.
DOI: 10.1016/s0008-8846(00)00292-1
Google Scholar
[30]
Kawashima, S., Hou, P., Corr, D.J., Shah, S.P. (2013). Modification of cement-based materials with nanoparticles., Journal of Cement and Concret Composites, Vol. 36, p.8–15.
DOI: 10.1016/j.cemconcomp.2012.06.012
Google Scholar
[31]
Kawashima, S., Kim, J.H., Corr, D., Shah, S.P. (2012). Study of the mechanisms underlying the fresh-state response of cementitious materials modified with nanoclays., Construction and Building Materials, Vol. 36, p.749–757.
DOI: 10.1016/j.conbuildmat.2012.06.057
Google Scholar
[32]
Kim, J.H., Beacraft, M., Shah, S.P. (2010). Effect of mineral admixtures on formwork pressure of self-consolidating concrete., Cement and Concrete Composites, Vol.32, No.9, p.665–671.
DOI: 10.1016/j.cemconcomp.2010.07.018
Google Scholar
[33]
Kim, J.H., Noemi, N., Shah, S.P. (2012). Effect of powder materials on the rheology and formwork pressure of self-consolidating concrete., Cement and Concrete Composites, Vol. 34, No.6, pp.746-753.
DOI: 10.1016/j.cemconcomp.2012.02.016
Google Scholar
[34]
Kırgız, M.S. (2014). Advances in physical properties of C class fly ash–cement systems blended nanographite (Part 1)., ZKG International, No.12, p.42–48, (2014).
Google Scholar
[35]
Kırgız, M.S. (2015a). Advances in physical properties of C class fly ash–cement systems blended nanographite (Part 2)., ZKG International, No.1-2, p.60–67.
Google Scholar
[36]
Kırgız, M.S. (2015b). Use of ultrafine marble and brick particles as raw materials in cement manufacturing., Materials and Structures, Vol. 48, No. 9, p.2929–2941.
DOI: 10.1617/s11527-014-0368-6
Google Scholar
[37]
Kırgız, M.S. (2015c). Supernatant Nanographite Solution for Advance Treatment of C Class Fly Ash–Cement Systems (Part 2)., ZKG International, No. 5, p.42–47, (2015).
Google Scholar
[38]
Kırgız, M.S. (2015d). Supernatant Nanographite Solution for Advance Treatment of C Class Fly Ash–Cement Systems (Part 1)., ZKG International, No. 4, p.56–65.
Google Scholar
[39]
Kırgız, M.S. (2016a). Fresh and Hardened Properties of Green Binder Concrete Containing Marble Powder and Brick Powder., European Journal of Environmental and Civil Engineering, Issue Sup1: Supplement: Green Binder Materials for Civil Engineering and Architecture Applications, Vol. 20, pp.64-101.
DOI: 10.1080/19648189.2016.1246692
Google Scholar
[40]
Kırgız, M.S. (2016b). Strength Gain Mechanism for Green Mortar Substituted Marble Powder and Brick Powder for Portland Cement., European Journal of Environmental and Civil Engineering, Issue Sup1: Supplement: Green Binder Materials for Civil Engineering and Architecture Applications, Vol. 20, pp.38-63.
DOI: 10.1080/19648189.2016.1246691
Google Scholar
[41]
Kong, D., Du, X., Wei, S., Zhang, H., Yang, Y., Shah, S.P. (2012). Influence of nano-silica agglomeration on microstructure and properties of the hardened cement-based materials., Construction and Building Materials, Vol. 37, p.707–715.
DOI: 10.1016/j.conbuildmat.2012.08.006
Google Scholar
[42]
Kong, D., Su, Y., Du, X., Yang, Y., Wei, S., Shah, S.P. (2013). Influence of nano-silica agglomeration on fresh properties of cement pastes., Journal of Construction and Building Materials, Vol. 43, p.557–562.
DOI: 10.1016/j.conbuildmat.2013.02.066
Google Scholar
[43]
Konsta-Gdoutos, M.S., Metaxa, Z.S., Shah, S.P. (2010). Highly dispersed carbon nanotube reinforced cement based materials., Cement and Concrete Research, Vol.40, No.7, p.1052–1059.
DOI: 10.1016/j.cemconres.2010.02.015
Google Scholar
[44]
Konsta-Gdoutos, M.S., Metaxa, Z.S., Shah, S.P. (2010). Multi-scale mechanical and fracture characteristics and early-age strain capacity of high performance carbon nanotube/cement nanocomposites., Journal of Cement and Concrete Composites, Vol. 32, No. 2, p.110–115.
DOI: 10.1016/j.cemconcomp.2009.10.007
Google Scholar
[45]
Li, G. (2004). "Properties of high-volume fly ash concrete incorporating nano-SiO2, Journal of Cement and Concrete Research, Vol. 34, No.6, p.1043–1049.
DOI: 10.1016/j.cemconres.2003.11.013
Google Scholar
[46]
Li, H., Xiao, H.G., Ou, J.P. (2004). A study on mechanical and pressure-sensitive properties of cement mortar with nanophase materials., Cement Concrete Reseacrh, Vol.34, No.3, p.435–438.
DOI: 10.1016/j.cemconres.2003.08.025
Google Scholar
[47]
Li, H., Xiao, H-g., Yuan, J., Ou, J. (2004). Microstructure of cement mortar with nano-particles., Journal of Composites Part B, Vol. 35, p.185–189.
DOI: 10.1016/s1359-8368(03)00052-0
Google Scholar
[48]
Li, Z., Wang, H., He, S., Lu, Y., Wang, M. (2006). Investigations on the preparation and mechanical properties of the nano-alumina reinforced cement composite., Materials Letter, Vol. 60, No.3, p.356–359.
DOI: 10.1016/j.matlet.2005.08.061
Google Scholar
[49]
Lin, D.F., Lin, K.L., Chang, W.C., Luo, H.L., Cai, M.Q. (2008). Improvements of nano-SiO2 on sludge/fly ash mortar., Waste Mangement, Vol. 28, No.6, p.1081–1087.
DOI: 10.1016/j.wasman.2007.03.023
Google Scholar
[50]
Lin, K.L., Chang, W.C., Lin, D.F., Luo, H.L., Tsai, M.C. (2008). Effects of nano-SiO2 and different ash particle sizes on sludge ash–cement mortar., Journal of Environmental Management, Vol. 88, No. 4, p.708–714.
DOI: 10.1016/j.jenvman.2007.03.036
Google Scholar
[51]
Liu, X., Chen, L., Liu A., Wang, X. (2012). Effect of nano-CaCO3 on properties of cement paste., Energy Procedia, Vol. 16, p.991–996.
DOI: 10.1016/j.egypro.2012.01.158
Google Scholar
[52]
Lothenbach, B., Le Saout, G., Gallucci, E., Scrivener, K. (2008). Influence of limestone on the hydration of Portland cements., Cement and Concrete Research, Vol. 38, No.6, pp.848-860.
DOI: 10.1016/j.cemconres.2008.01.002
Google Scholar
[53]
Ltifi, M., Guefrech, A., Mounanga, P., Khelidj, A. (2011). Experimental study of the effect of addition of nano-silica on the behaviour of cement mortars., Procedia Engineering, Vol. 10, p.900–905.
DOI: 10.1016/j.proeng.2011.04.148
Google Scholar
[54]
Makar J. (2011). The Effect of SWCNT and Other Nanomaterials on Cement Hydration and Reinforcement, Nanotechnology in Civil Infrastructure, Eds: K. Gopalakrishnan, B. Birgisson, P. Taylor and N. Attoh-Okine, Springer, pp.103-130.
DOI: 10.1007/978-3-642-16657-0_4
Google Scholar
[55]
Meng, T., Yu, Y., Qian, X., Zhan, S., Qian, K. (2012). Effect of nano-TiO2 on the mechanical properties of cement mortar., Journal of Construction and Building Materials, Vol. 29, p.241–245.
DOI: 10.1016/j.conbuildmat.2011.10.047
Google Scholar
[56]
Metaxa, Z.S., Seo, J-W.T., Konsta-Gdoutos, M.S., Hersam, M.C., Shah, S.P. (2012). Highly concentrated carbon nanotube admixture for nano-fiber reinforced cementitious materials., Journal of Cement and Concrete Composites, Vol.34, No. 5, p.612–617.
DOI: 10.1016/j.cemconcomp.2012.01.006
Google Scholar
[57]
Morsy, M.S., Al-Salloum, Y.A., Abbas, H., Alsayed, S.H. (2012). Behavior of blended cement mortars containing nano-metakaolin at elevated temperatures., Construction and Building Materials, Vol. 35, p.900–905.
DOI: 10.1016/j.conbuildmat.2012.04.099
Google Scholar
[58]
Morsy, M.S., Alsayed, S.H., Aqel, M. (2011). Hybrid effect of carbon nanotube and nano-clay on physico-mechanical properties of cement mortar., Construction and Building Materials, Vol. 25, p.145–149.
DOI: 10.1016/j.conbuildmat.2010.06.046
Google Scholar
[59]
Nazari, A., Riahi, S. (2011). The effects of SiO2 nanoparticles on physical and mechanical properties of high strength compacting concrete., Journal of Composites Part B: Engineering, Vol. 42, No.3, p.570–578.
DOI: 10.1016/j.compositesb.2010.09.025
Google Scholar
[60]
Nazari, A., Riahi, S. (2011). The effects of zinc dioxide nanoparticles on flexural strength of self-compacting concrete., Journal of Composites Part B: Engineering, Vol. 42, No. 2, p.167–75.
DOI: 10.1016/j.compositesb.2010.09.001
Google Scholar
[61]
Nochaiya, T., Chaipanich, A. (2010). Behavior of multi-walled carbon nanotubes on the porosity and microstructure of cement-based materials., Applied Surface Science, Vol. 257, No.6, p.1941–1945.
DOI: 10.1016/j.apsusc.2010.09.030
Google Scholar
[62]
Oltulu, M., Sahin, R. (2013). Effect of nano-SiO2, nano-Al2O3 and nano-Fe2O3 powders on compressive strengths and capillary water absorption of cement mortar containing fly ash: A comparative study., Energy and Buildings, Vol. 58, p.292–301.
DOI: 10.1016/j.enbuild.2012.12.014
Google Scholar
[63]
Pekmezci, B.Y., Voigt, T., Kejin, W., Shah, S.P. (2007). Low compaction energy concrete for improved slipform casting of concrete pavements., ACI Materials, Vol. 104, No.3, p.251–258.
DOI: 10.14359/18670
Google Scholar
[64]
Péra, J., Husson, S., Guilhot, B. (1999). Influence of finely ground limestone on cement hydration., Cement and Concrete Composites, Vol. 21, No. 2, pp.99-105.
DOI: 10.1016/s0958-9465(98)00020-1
Google Scholar
[65]
Pourjavadi, A., Fakoorpoor, S. M., Khaloo, A., Hosseini, P. (2012). Improving the performance of cement-based composites containing superabsorbent polymers by utilization of nano-SiO2 particles., Materials and Design, Vol.42, p.94–101.
DOI: 10.1016/j.matdes.2012.05.030
Google Scholar
[66]
Qing, Y., Zenan, Z., Deyu, K., Rongshen, C. (2007). Influence of nano-SiO2 addition on properties of hardened cement paste as compared with silica fume., Construction and Building Materials, Vol. 21, No. 3, p.539–545.
DOI: 10.1016/j.conbuildmat.2005.09.001
Google Scholar
[67]
Quercia, G., Hüsken, G., Brouwers, H.J.H. (2012). Water demand of amorphous nano silica and its impact on the workability of cement paste., Cement and Concrete Research, Vol. 42, p.344–357.
DOI: 10.1016/j.cemconres.2011.10.008
Google Scholar
[68]
Sato, T., Beaudoin, J. (2010) Effect of nano-CaCO3 on hydration of cement containing supplementary cementitious materials., Advences in Cement Research, Vol. 23, No.1, pp.33-43.
DOI: 10.1680/adcr.9.00016
Google Scholar
[69]
Sato, T., Beaudoin, J.J. (2006). The effect of nano-sized CaCO3 addition on the hydration of OPC containing high volumes of fly ash., Proc., 12th Int. Congr., on the Chemistry of Cement, Montreal, Canada, p.1–12.
Google Scholar
[70]
Sato, T., Diallo, F. (2010). Seeding effect of nano-CaCO3 on the hydration of tricalcium silicate., Journal of Transportation Research Board, Vol. 2141, p.61–67.
DOI: 10.3141/2141-11
Google Scholar
[71]
Senff, L., Hotza, D., Lucas, S., Ferreira, V.M., Labrincha, J.A. (2012). Effect of nano-SiO2 and nano-TiO2 addition on the rheological behavior and the hardened properties of cement mortars., Journal of Materials Science and Engineering A, Vol. 532, p.354–361.
DOI: 10.1016/j.msea.2011.10.102
Google Scholar
[72]
Senff, L., Labrincha, J. A., Ferreira, V. M., Hotza, D., Repette, W. L. (2009). Effect of nano-silica on rheology and fresh properties of cement pastes and mortars., Construction and Building Materials, Vol. 23, No.7, p.2487–249.
DOI: 10.1016/j.conbuildmat.2009.02.005
Google Scholar
[73]
Shih, J-Y., Chang, T-P. Hsiao, T-C. (2006). Effect of nanosilica on characterization of Portland cement composite., Journal of Materials Science and Engineering: A, Vol.424, No.1, p.266–274.
DOI: 10.1016/j.msea.2006.03.010
Google Scholar
[74]
Sobolev, K., Flores, I., Torres-Martinez, L.M., Valdez, P.L., Zarazua, E., Cuellar, E.L. (2009).
Google Scholar
[75]
Stefanidou, M., Papayianni, I. (2012). Influence of nano-SiO2 on the Portland cement pastes., Journal of Composites Part B, Vol. 43, p.2706–2710.
DOI: 10.1016/j.compositesb.2011.12.015
Google Scholar
[76]
Tregger, N. (2010). Tailoring the fresh state of concrete., PhD Thesis, Northwestern University Civil and Environmental Engineering, 60201 Evanston, IL, USA.
Google Scholar
[77]
Tregger, N., Voigt, T., Shah, S. P. (2007). Improving the slipform process via material manipulation, Eds: Grosse CU, Advences in Construction Materials, Springer, Berlin Heidelberg, p.539–546.
DOI: 10.1007/978-3-540-72448-3_55
Google Scholar
[78]
Tregger, N.A., Pakula, M.E., Shah, S.P. (2010). Influence of clays on the rheology of cement pastes., Cement and Concrete Research, Vol. 40, No. 3, p.384–391.
DOI: 10.1016/j.cemconres.2009.11.001
Google Scholar
[79]
Voigt, T., Mbele, J.J., Wang, K., Shah, S.P. (2010). Using fly ash, clay, and fibers for simultaneous improvement of concrete green strength and consolidatability for slip-form pavement., Journal of Materials in Civil Engineering, Vol. 22, No.2, p.196–206.
DOI: 10.1061/(asce)0899-1561(2010)22:2(196)
Google Scholar
[80]
Yousefi, A., Allahverdi, A., Hejazi, P. (2013). Effective dispersion of nano-TiO2 powder for enhancement of photocatalytic properties in cement mixes., Journal of Construction and Building Materials, Vol. 41, p.224–230.
DOI: 10.1016/j.conbuildmat.2012.11.057
Google Scholar
[81]
Yuan, Z.C., Guo, W.J. (1987). Bond between marble and cement paste., Cement and Concrete Research, Vol. 17, No. 4, p.544–552.
DOI: 10.1016/0008-8846(87)90127-x
Google Scholar
[82]
Zegetosky, C., Özyıldırım, C. (2010). Exploratory Investigation of Nanomaterials to Improve Strength and Permeability of Concrete., Journal of the Transportation Research Board, Vol. 2142, No.1, p.1–8, DOI.
DOI: 10.3141/2142-01
Google Scholar
[83]
Zhang, M-H., Islam, J., Peethamparan, S. (2012). Use of nano-silica to increase early strength and reduce setting time of concretes with high volumes of slag., Cement and Concrete Composites, Vol. 34, p.650–662.
DOI: 10.1016/j.cemconcomp.2012.02.005
Google Scholar