[1]
Y. Lan, A. J. Minnich, G. Chen, Z. Ren, Enhancement of thermoelectric figure-of-merit by a bulk nanostructuring approach, Adv. Funct. Mater. 20 (2010) 357–376.
DOI: 10.1002/adfm.200901512
Google Scholar
[2]
C. Han, Z. Li, S. Dou, Recent progress in thermoelectric materials, Chin. Sci. Bull. 59 (2014) 2073-(2091).
DOI: 10.1007/s11434-014-0237-2
Google Scholar
[3]
A. Nag, V. Shubha, Oxide thermoelectric materials: A structure-property relationship, Journal of Elec. Materi. 43 (2014) 962.
DOI: 10.1007/s11664-014-3024-6
Google Scholar
[4]
M. H. Elheikh, D. A. Shnawah, M. F. M. Sabri, S. B. M. Said, M. H. Hassa, M. B. A. Bashir, A review on thermoelectric renewable energy: Principle parameters that affect their performance, Renew. Sustain. Energy Rev. 30 (2014) 337–355.
DOI: 10.1016/j.rser.2013.10.027
Google Scholar
[5]
W. Liu, X. Yan, G. Chen, Z. F. Ren, Recent advances in thermoelectric nanocomposites, Nano Energy 1 (2012) 42–56.
DOI: 10.1016/j.nanoen.2011.10.001
Google Scholar
[6]
S. K. Bux, J-P. Fleurial, R. B. Kaner, Nanostructured materials for thermoelectric applications, Chem. Commun. 46 (2010) 8311-8324.
DOI: 10.1039/c0cc02627a
Google Scholar
[7]
H. Alam, S. Ramakrishna, A review on the enhancement of figure of merit from bulk to nano-thermoelectric materials, Nano Energy 2 (2013) 190-212.
DOI: 10.1016/j.nanoen.2012.10.005
Google Scholar
[8]
J. R. Sootsman, D.Y. Chung, M. G. Kanatzidis, New and old concepts in thermoelectric materials, Angew. Chem. Int. Ed. 48 (2009) 8616-8639.
DOI: 10.1002/anie.200900598
Google Scholar
[9]
J. R. Szczech, J. M. Higgins, S. Jin, Enhancement of the thermoelectric properties in nanoscale and nanostructured materials, J. Mater. Chem. 21 (2011) 4037–4055.
DOI: 10.1039/c0jm02755c
Google Scholar
[10]
Z. G. Chen, G. Han, L. Yang, L. Cheng, J. Zou, Nanostructured thermoelectric materials: current research and future challenge, Prog. Nat. Sci.: Mater. Int. 22(6) (2012) 535–549.
DOI: 10.1016/j.pnsc.2012.11.011
Google Scholar
[11]
T. Nagira, M. Ito, S. Katsuyama, K. Majima, H. Nagai, Thermoelectric properties of (Na1-yMy)xCo2O4 (M=K, Sr, Y, Nd, Sm and Yb; y=0.01~0.35), J. Alloy. Compd. 348 (2003) 263-269.
DOI: 10.1016/s0925-8388(02)00799-5
Google Scholar
[12]
K. Park, J. W. Choi, G. W. Lee, S-J. Kim, S-M. Choi, W-S. Seo, S. M. Lim, Thermoelectric properties of solution-combustion-processed Na(Co1-xNix)2O4, Met. Mater. Int. 18 (2012) 1061-1065.
DOI: 10.1007/s12540-012-6021-4
Google Scholar
[13]
Z. Tian, X. Wang, J. Liu, Z. Lin, Y. Hu, Y. Wu, C. Han, Z. Hu, Power factor enhancement induced by Bi and Mn co-substitution in NaxCoO2 thermoelectric materials, J. Alloy. Compd. 661 (2016) 161-167.
DOI: 10.1016/j.jallcom.2015.11.084
Google Scholar
[14]
L. Li, Z. Chen, M. Zhou, R. Huang, Developments in semiconductor thermoelectric materials, Front Energy 5 (2011) 125-136.
Google Scholar
[15]
S. Maensiri, W. Nuansing, Thermoelectric oxide NaCo2O4 nanofibers fabricated by electrospinning, Mater. Chem. Phys. 99 (2006) 104–108.
DOI: 10.1016/j.matchemphys.2005.10.004
Google Scholar
[16]
Y. Li, B. Ma, M. Jiang, Z. Wang, Thermoelectric Properties of (Na1−y M y )1.4Co2O4 (M = Sr, Li), J. Elect. Mater. 40 (2011) 1115-1118.
DOI: 10.1007/s11664-011-1553-9
Google Scholar
[17]
X. Yang, X. Wang, J. Liu, Z. Hu, Power factor enhancement in NaxCoO2 doped by Bi, J. Alloy. Compd. 582 (2014) 59-63.
DOI: 10.1016/j.jallcom.2013.08.002
Google Scholar
[18]
T. Nagira, M. Ito, S. Hara, Effect of partial substitutions of rare-earth metals for Na-site on the thermoelectric properties of NaxCo2O4 prepared by the polymerized complex method, Mater. Trans. 45 (2004) 1339-1345.
DOI: 10.2320/matertrans.45.1339
Google Scholar
[19]
N. Li, Y. Jiang, G. Li, C. Wang, J. Shi, D. Yu, Self-ignition route to Ag-doped Na1.7Co2O4 and its thermoelectric properties, J. Alloy. Compd 467 (2009) 444-4449.
DOI: 10.1016/j.jallcom.2007.12.012
Google Scholar
[20]
K. Kurosaki, H. Muta, M. Uno, S. Yamanak, Thermoelectric properties of NaCo2O4, J. Alloy Compd. 315 (2001) 234-236.
DOI: 10.1016/s0925-8388(00)01277-9
Google Scholar
[21]
K. Park, K. U. Jang, Improvement in high-temperature thermoelectric properties of NaCo2O4 through partial substitution of Ni for Co, Mater. Lett. 60 (2006) 1106-1110.
DOI: 10.1016/j.matlet.2005.10.086
Google Scholar
[22]
L. Wang, M. Wang, D. Zhao, Thermoelectric properties of c-axis oriented Ni-substituted NaCoO2 thermoelectric oxide by the citric acid complex method, J. Alloy. Compd. 471 (2009) 519-523.
DOI: 10.1016/j.jallcom.2008.04.013
Google Scholar
[23]
T. Seetawan, V. Amornkitbamrung, T. Burinprakhon, S. Maensiri, K. Kurosaki, H. Muta, M. Uno, S. Ymanaka, Thermoelectric power and electrical resistivity of Ag-doped Na1.5Co2O4. J. Alloy. Compd. 407 (2006) 314-317.
DOI: 10.1016/j.jallcom.2005.06.032
Google Scholar
[24]
Z. P. Guo, Y. G. Zhao, W. Y. Zhang, L. Cui, S. M. Guo, L. B. Luo, Effect of Ga and Mn doping on structural, electrical transport and magnetic properties of Na0.75CoO2, J. Phys.: Condens. Matter. 18 (2006) 4381-4388.
DOI: 10.1088/0953-8984/18/17/023
Google Scholar
[25]
K. Park, K. Y. Ko, J-G. Kim, W. S. Cho, Microstructure and high-temperature thermoelectric properties of CuO and NiO co-substituted NaCo2O4, Matter. Sci. Eng. B 129 (2006) 200-206.
DOI: 10.1016/j.mseb.2006.01.018
Google Scholar
[26]
M. Ito, T. Nagira, Y. Oda, S. Katsuyama, K. Majima, H. Nagai, Effect of partial substitution of 3d transition metals for Co on the thermoelectric properties of NaxCo2O4, Mater. Trans. 43 (2002) 601-607.
DOI: 10.2320/matertrans.43.601
Google Scholar
[27]
E. Altin, E. Oz, S. Demirel, A. Bayri, Magnetic and thermoelectric properties of B-substituted NaCoO2, Appl. Phys. A 119 (2015) 1187-1196.
DOI: 10.1007/s00339-015-9089-0
Google Scholar
[28]
Y. Dai, W. Liu, E. Formo, Y. Sun, Y. Xia, Ceramic nanofibers fabricated by electrospinning and their applications in catalysis, environmental science, and energy technology, Polym. Adv. Technol. 22 (2010) 326–338.
DOI: 10.1002/pat.1839
Google Scholar
[29]
Z. Dong, S. J. Kennedy, Y. Wu, Electrospinning materials for energy-related applications and devices, J. Power Sources 196 (2011) 4886–4904.
DOI: 10.1016/j.jpowsour.2011.01.090
Google Scholar
[30]
P. H. Tsai, S. Li and Y. Y. Tay, Texturing behaviors and kinetics of NaCo2O4-δ thermoelectric materials, J. Am. Ceram. Soc., 90 (6) (2007) 1908–(1911).
Google Scholar
[31]
W. Shin, N. Murayama, High performance p-type thermoelectric oxide based on NiO, Materials Letters 45 (2000) 302–306.
DOI: 10.1016/s0167-577x(00)00122-1
Google Scholar
[32]
C. Suryanarayana, M. G. Norton, X-ray diffraction a practical approach, Plenum Press, New York, (1998).
Google Scholar
[33]
B. Karunagaran, R. T. R. Kumar, D. Mangalaraj, S. K. Narayandass and G. M. Rao, Influence of thermal annealing on the composition and structural parameters of DC magnetron sputtered titanium dioxide thin films, Cryst. Res. Technol. 37 (2002).
DOI: 10.1002/crat.200290004
Google Scholar
[34]
P. H. Klug and L. E. Alexander, X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, Wiley, New York, (1974).
Google Scholar
[35]
N. S. Prasad and K. B. R. Varma, Nanocrystallization of SrBi2Nb2O9 from glasses in the system Li2B4O7-SrO-Bi2O3-Nb2O5, Mater. Sci. Eng. B-Adv. 90 (2002) 246.
DOI: 10.1016/s0921-5107(01)00919-9
Google Scholar
[36]
E. Alvarado, L. M. Torres-Martinez, A. F. Fuentes and P. Quintana, Preparation and characterization of MgO powders obtained from different magnesium salts and the mineral dolomite, Polyhedron 19 (2000) 2345.
DOI: 10.1016/s0277-5387(00)00570-2
Google Scholar
[37]
Y. Ding, G. T. Zhang, H. Wu, B. Hai, L. B. Wang and Y. T. Qian, Nanoscale magnesium hydroxide and magnesium oxide powders: Control over size, shape, and structure via hydrothermal synthesis, Chem. Mater. 13 (2001) 435.
DOI: 10.1021/cm000607e
Google Scholar
[38]
S. T. Breviglieri, E. T. G. Cavalheiro, G. O. Chierice, Correlation between ionic radius and thermal decomposition of Fe(II), Co(II), Ni(II), Cu(II) and Zn(II) diethanol dithio carbamates, Thermochimica Acta 356 (2000) 79-84.
DOI: 10.1016/s0040-6031(00)00465-2
Google Scholar
[39]
K. Mahmood, D. Song, S. B. Park, Effects of thermal treatment on the characteristics of boron and tantalum-doped ZnO thin films deposited by the electrospraying method at atmospheric pressure, Surface & Coatings Technology 206 (2012) 4730–4740.
DOI: 10.1016/j.surfcoat.2012.01.047
Google Scholar
[40]
S. R. Ghorbani, M. Andersson, P. Lundqvist, M. Valldor, O. Rapp, Thermoelectric power and resistivity of Nd1-xCaxBa2Cu3Oy and Nd1-xLaxBa2Cu3Oy, Physica C 339 (2000) 245-252.
DOI: 10.1016/s0921-4534(00)00346-4
Google Scholar