Thermoelectric Properties of Nickel and Boron Co-Substituted NaCo2O4 Prepared by Electrospinning Technique

Article Preview

Abstract:

In this study nickel and boron doped sodium cobalt oxide NaCo2-xNixByO4 (0≤x≤0.3, 0≤y≤0.1) nanocrystalline thermoelectric ceramic powders were synthesized using electrospinning techniques and then consolidated into bulk ceramics. The differences in the microstructure and thermoelectric properties of the samples as a result of doping effect have been investigated. The crystalline structures of the powders and nanofibers were characterized using X-ray diffraction and scanning electron microscopy and BET Analysis before and after the calcination process at different temperatures. Nanofibers prepared by the use of electrospinning technique, have a diameter of approximately 300 nm, and the diameter of the grains of calcined powders was observed to range between 150 to 500 nanometers. Thermoelectric properties of the bulk ceramics were measured by physical properties measurement system (Lot-Oriel PPMS) in a temperature range of 15–300 K. The calculated values of dimensionless figure of merit at 300 K are 4.25×10-5, 5.3×10-6, 8.6×10-5 and 9×10-6 for sintered powders from undoped, Ni and B doped powders, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

34-45

Citation:

Online since:

February 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Lan, A. J. Minnich, G. Chen, Z. Ren, Enhancement of thermoelectric figure-of-merit by a bulk nanostructuring approach, Adv. Funct. Mater. 20 (2010) 357–376.

DOI: 10.1002/adfm.200901512

Google Scholar

[2] C. Han, Z. Li, S. Dou, Recent progress in thermoelectric materials, Chin. Sci. Bull. 59 (2014) 2073-(2091).

DOI: 10.1007/s11434-014-0237-2

Google Scholar

[3] A. Nag, V. Shubha, Oxide thermoelectric materials: A structure-property relationship, Journal of Elec. Materi. 43 (2014) 962.

DOI: 10.1007/s11664-014-3024-6

Google Scholar

[4] M. H. Elheikh, D. A. Shnawah, M. F. M. Sabri, S. B. M. Said, M. H. Hassa, M. B. A. Bashir, A review on thermoelectric renewable energy: Principle parameters that affect their performance, Renew. Sustain. Energy Rev. 30 (2014) 337–355.

DOI: 10.1016/j.rser.2013.10.027

Google Scholar

[5] W. Liu, X. Yan, G. Chen, Z. F. Ren, Recent advances in thermoelectric nanocomposites, Nano Energy 1 (2012) 42–56.

DOI: 10.1016/j.nanoen.2011.10.001

Google Scholar

[6] S. K. Bux, J-P. Fleurial, R. B. Kaner, Nanostructured materials for thermoelectric applications, Chem. Commun. 46 (2010) 8311-8324.

DOI: 10.1039/c0cc02627a

Google Scholar

[7] H. Alam, S. Ramakrishna, A review on the enhancement of figure of merit from bulk to nano-thermoelectric materials, Nano Energy 2 (2013) 190-212.

DOI: 10.1016/j.nanoen.2012.10.005

Google Scholar

[8] J. R. Sootsman, D.Y. Chung, M. G. Kanatzidis, New and old concepts in thermoelectric materials, Angew. Chem. Int. Ed. 48 (2009) 8616-8639.

DOI: 10.1002/anie.200900598

Google Scholar

[9] J. R. Szczech, J. M. Higgins, S. Jin, Enhancement of the thermoelectric properties in nanoscale and nanostructured materials, J. Mater. Chem. 21 (2011) 4037–4055.

DOI: 10.1039/c0jm02755c

Google Scholar

[10] Z. G. Chen, G. Han, L. Yang, L. Cheng, J. Zou, Nanostructured thermoelectric materials: current research and future challenge, Prog. Nat. Sci.: Mater. Int. 22(6) (2012) 535–549.

DOI: 10.1016/j.pnsc.2012.11.011

Google Scholar

[11] T. Nagira, M. Ito, S. Katsuyama, K. Majima, H. Nagai, Thermoelectric properties of (Na1-yMy)xCo2O4 (M=K, Sr, Y, Nd, Sm and Yb; y=0.01~0.35), J. Alloy. Compd. 348 (2003) 263-269.

DOI: 10.1016/s0925-8388(02)00799-5

Google Scholar

[12] K. Park, J. W. Choi, G. W. Lee, S-J. Kim, S-M. Choi, W-S. Seo, S. M. Lim, Thermoelectric properties of solution-combustion-processed Na(Co1-xNix)2O4, Met. Mater. Int. 18 (2012) 1061-1065.

DOI: 10.1007/s12540-012-6021-4

Google Scholar

[13] Z. Tian, X. Wang, J. Liu, Z. Lin, Y. Hu, Y. Wu, C. Han, Z. Hu, Power factor enhancement induced by Bi and Mn co-substitution in NaxCoO2 thermoelectric materials, J. Alloy. Compd. 661 (2016) 161-167.

DOI: 10.1016/j.jallcom.2015.11.084

Google Scholar

[14] L. Li, Z. Chen, M. Zhou, R. Huang, Developments in semiconductor thermoelectric materials, Front Energy 5 (2011) 125-136.

Google Scholar

[15] S. Maensiri, W. Nuansing, Thermoelectric oxide NaCo2O4 nanofibers fabricated by electrospinning, Mater. Chem. Phys. 99 (2006) 104–108.

DOI: 10.1016/j.matchemphys.2005.10.004

Google Scholar

[16] Y. Li, B. Ma, M. Jiang, Z. Wang, Thermoelectric Properties of (Na1−y M y )1.4Co2O4 (M = Sr, Li), J. Elect. Mater. 40 (2011) 1115-1118.

DOI: 10.1007/s11664-011-1553-9

Google Scholar

[17] X. Yang, X. Wang, J. Liu, Z. Hu, Power factor enhancement in NaxCoO2 doped by Bi, J. Alloy. Compd. 582 (2014) 59-63.

DOI: 10.1016/j.jallcom.2013.08.002

Google Scholar

[18] T. Nagira, M. Ito, S. Hara, Effect of partial substitutions of rare-earth metals for Na-site on the thermoelectric properties of NaxCo2O4 prepared by the polymerized complex method, Mater. Trans. 45 (2004) 1339-1345.

DOI: 10.2320/matertrans.45.1339

Google Scholar

[19] N. Li, Y. Jiang, G. Li, C. Wang, J. Shi, D. Yu, Self-ignition route to Ag-doped Na1.7Co2O4 and its thermoelectric properties, J. Alloy. Compd 467 (2009) 444-4449.

DOI: 10.1016/j.jallcom.2007.12.012

Google Scholar

[20] K. Kurosaki, H. Muta, M. Uno, S. Yamanak, Thermoelectric properties of NaCo2O4, J. Alloy Compd. 315 (2001) 234-236.

DOI: 10.1016/s0925-8388(00)01277-9

Google Scholar

[21] K. Park, K. U. Jang, Improvement in high-temperature thermoelectric properties of NaCo2O4 through partial substitution of Ni for Co, Mater. Lett. 60 (2006) 1106-1110.

DOI: 10.1016/j.matlet.2005.10.086

Google Scholar

[22] L. Wang, M. Wang, D. Zhao, Thermoelectric properties of c-axis oriented Ni-substituted NaCoO2 thermoelectric oxide by the citric acid complex method, J. Alloy. Compd. 471 (2009) 519-523.

DOI: 10.1016/j.jallcom.2008.04.013

Google Scholar

[23] T. Seetawan, V. Amornkitbamrung, T. Burinprakhon, S. Maensiri, K. Kurosaki, H. Muta, M. Uno, S. Ymanaka, Thermoelectric power and electrical resistivity of Ag-doped Na1.5Co2O4. J. Alloy. Compd. 407 (2006) 314-317.

DOI: 10.1016/j.jallcom.2005.06.032

Google Scholar

[24] Z. P. Guo, Y. G. Zhao, W. Y. Zhang, L. Cui, S. M. Guo, L. B. Luo, Effect of Ga and Mn doping on structural, electrical transport and magnetic properties of Na0.75CoO2, J. Phys.: Condens. Matter. 18 (2006) 4381-4388.

DOI: 10.1088/0953-8984/18/17/023

Google Scholar

[25] K. Park, K. Y. Ko, J-G. Kim, W. S. Cho, Microstructure and high-temperature thermoelectric properties of CuO and NiO co-substituted NaCo2O4, Matter. Sci. Eng. B 129 (2006) 200-206.

DOI: 10.1016/j.mseb.2006.01.018

Google Scholar

[26] M. Ito, T. Nagira, Y. Oda, S. Katsuyama, K. Majima, H. Nagai, Effect of partial substitution of 3d transition metals for Co on the thermoelectric properties of NaxCo2O4, Mater. Trans. 43 (2002) 601-607.

DOI: 10.2320/matertrans.43.601

Google Scholar

[27] E. Altin, E. Oz, S. Demirel, A. Bayri, Magnetic and thermoelectric properties of B-substituted NaCoO2, Appl. Phys. A 119 (2015) 1187-1196.

DOI: 10.1007/s00339-015-9089-0

Google Scholar

[28] Y. Dai, W. Liu, E. Formo, Y. Sun, Y. Xia, Ceramic nanofibers fabricated by electrospinning and their applications in catalysis, environmental science, and energy technology, Polym. Adv. Technol. 22 (2010) 326–338.

DOI: 10.1002/pat.1839

Google Scholar

[29] Z. Dong, S. J. Kennedy, Y. Wu, Electrospinning materials for energy-related applications and devices, J. Power Sources 196 (2011) 4886–4904.

DOI: 10.1016/j.jpowsour.2011.01.090

Google Scholar

[30] P. H. Tsai, S. Li and Y. Y. Tay, Texturing behaviors and kinetics of NaCo2O4-δ thermoelectric materials, J. Am. Ceram. Soc., 90 (6) (2007) 1908–(1911).

Google Scholar

[31] W. Shin, N. Murayama, High performance p-type thermoelectric oxide based on NiO, Materials Letters 45 (2000) 302–306.

DOI: 10.1016/s0167-577x(00)00122-1

Google Scholar

[32] C. Suryanarayana, M. G. Norton, X-ray diffraction a practical approach, Plenum Press, New York, (1998).

Google Scholar

[33] B. Karunagaran, R. T. R. Kumar, D. Mangalaraj, S. K. Narayandass and G. M. Rao, Influence of thermal annealing on the composition and structural parameters of DC magnetron sputtered titanium dioxide thin films, Cryst. Res. Technol. 37 (2002).

DOI: 10.1002/crat.200290004

Google Scholar

[34] P. H. Klug and L. E. Alexander, X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, Wiley, New York, (1974).

Google Scholar

[35] N. S. Prasad and K. B. R. Varma, Nanocrystallization of SrBi2Nb2O9 from glasses in the system Li2B4O7-SrO-Bi2O3-Nb2O5, Mater. Sci. Eng. B-Adv. 90 (2002) 246.

DOI: 10.1016/s0921-5107(01)00919-9

Google Scholar

[36] E. Alvarado, L. M. Torres-Martinez, A. F. Fuentes and P. Quintana, Preparation and characterization of MgO powders obtained from different magnesium salts and the mineral dolomite, Polyhedron 19 (2000) 2345.

DOI: 10.1016/s0277-5387(00)00570-2

Google Scholar

[37] Y. Ding, G. T. Zhang, H. Wu, B. Hai, L. B. Wang and Y. T. Qian, Nanoscale magnesium hydroxide and magnesium oxide powders: Control over size, shape, and structure via hydrothermal synthesis, Chem. Mater. 13 (2001) 435.

DOI: 10.1021/cm000607e

Google Scholar

[38] S. T. Breviglieri, E. T. G. Cavalheiro, G. O. Chierice, Correlation between ionic radius and thermal decomposition of Fe(II), Co(II), Ni(II), Cu(II) and Zn(II) diethanol dithio carbamates, Thermochimica Acta 356 (2000) 79-84.

DOI: 10.1016/s0040-6031(00)00465-2

Google Scholar

[39] K. Mahmood, D. Song, S. B. Park, Effects of thermal treatment on the characteristics of boron and tantalum-doped ZnO thin films deposited by the electrospraying method at atmospheric pressure, Surface & Coatings Technology 206 (2012) 4730–4740.

DOI: 10.1016/j.surfcoat.2012.01.047

Google Scholar

[40] S. R. Ghorbani, M. Andersson, P. Lundqvist, M. Valldor, O. Rapp, Thermoelectric power and resistivity of Nd1-xCaxBa2Cu3Oy and Nd1-xLaxBa2Cu3Oy, Physica C 339 (2000) 245-252.

DOI: 10.1016/s0921-4534(00)00346-4

Google Scholar