[1]
N. Muto, H. Yanagida, T. Nakatsuji, M. Sugita, Y. Ohtsuka, Y Arai, Design of intelligent materials with self-diagnosing function for preventing fatal fracture, Smart Mater. Struct. 1(4) (1992) 324-329.
DOI: 10.1088/0964-1726/1/4/007
Google Scholar
[2]
P-W. Chen, D.D.L. Chung, Carbon fiber reinforced Concrete for smart structures capable of non-destructive flaw detection, Smart Mater. Struct, 2 (1993). 22-30.
DOI: 10.1088/0964-1726/2/1/004
Google Scholar
[3]
Kırgız, M.S., Strength Gain Mechanism for Green Mortar Substituted Marble Powder and Brick Powder for Portland Cement,, European Journal of Environmental and Civil Engineering, Issue Sup1: Supplement: Green Binder Materials for Civil Engineering and Architecture Applications, 20, (2016a), 38-63.
DOI: 10.1080/19648189.2016.1246691
Google Scholar
[4]
E. García-Macías, L. Rodríguez-Tembleque, R. Castro-Triguero, A. Sáez, Buckling analysis of functionally graded carbon nanotube-reinforced curved panels under axial compression and shear, Comp B-Eng 108, (2017), 243-256.
DOI: 10.1016/j.compositesb.2016.10.002
Google Scholar
[5]
Kırgız, M.S., Advance Treatment by Nanographite for Portland Pulverised Fly Ash Cement (The class F) Systems,, Composites Part B, 82(12), (2015a), 59–71.
DOI: 10.1016/j.compositesb.2015.08.003
Google Scholar
[6]
A.L. Pisello, A.L., D'Alessandro, A., Sambuco, S., Rallini, M., Ubertini, F., Asdrubali, F., Materazzi, A.L., Cotana, F. Multipurpose experimental characterization of smart nanocomposite cement-based materials for thermal-energy efficiency and strain-sensing capability Solar Energy Materials and Solar Cells, 161, (2017).
DOI: 10.1016/j.solmat.2016.11.030
Google Scholar
[7]
Kırgız, M.S., Advances in physical properties of C class fly ash–cement systems blended nanographite (Part 2),, ZKG International, 1-2, (2015b), 60–67.
Google Scholar
[8]
H. Saleem, A. Downey, S. Laflamme, S., M. Kollosche, M., F. Ubertini, Investigation of dynamic properties of a novel capacitive-based sensing skin for nondestructive testing, Materials EvaluationVolume 73(10) (2015) 1384-1391.
Google Scholar
[9]
J. Wu, C. Song, H.S. Saleem, A. Downey, S. Laflamme, Network of flexible capacitive strain gauges for the reconstruction of surface strain, Measurement Science and Technology 26(5) (2015) 1-12.
DOI: 10.1088/0957-0233/26/5/055103
Google Scholar
[10]
Batra, A. K. and Alomari, A. A. (2017) Power Harvesting via Smart Materials, (SPIE, USA).
Google Scholar
[11]
F. Azhari, N. Banthia, Cement-based sensors with carbon fibers and carbon nanotubes for piezoresistive sensing", Cem. Concr. Comp., vol. 34, pp.866-73, (2012).
DOI: 10.1016/j.cemconcomp.2012.04.007
Google Scholar
[12]
E. García-Macías, L. Rodríguez-Tembleque, R. Castro-Triguero, A. Sáez, Eshelby-Mori-Tanaka approach for post-buckling analysis of axially compressed functionally graded CNT/polymer composite cylindrical panels, Comp B-Eng 128 (2017) 208-224.
DOI: 10.1016/j.compositesb.2017.07.016
Google Scholar
[13]
Kırgız, M.S., Supernatant Nanographite Solution for Advance Treatment of C Class Fly Ash–Cement Systems (Part 2),, ZKG International, 5, (2015c), 42–47.
Google Scholar
[14]
Kırgız, M.S., Supernatant Nanographite Solution for Advance Treatment of C Class Fly Ash–Cement Systems (Part 1),, ZKG International, 4, (2015d), 56–65.
Google Scholar
[15]
Lourie O., D.E Wagner, Buckling and collapse of embedded carbon nanotube, Physical review Letter,(1998).
Google Scholar
[16]
E. García-Macías, R. Castro-Triguero, M.I. Friswell, S. Adhikari, A. Sáez, Metamodel-based approach for stochastic free vibration analysis of functionally graded carbon nanotube reinforced plates, Compos Struct 152, 2016, 183-198.
DOI: 10.1016/j.compstruct.2016.05.019
Google Scholar
[17]
B. Han, X .Yu, J. Ou, Multifunctional and smart nanotube reinforced cement-based materials, In Nanotechnology in Civil Infrastructure. A Paradigm shift. Gipalakrishnan K., Birgisson B., Taylor P., Attoh-Okine N. Ed. – Springer 2011, pp.1-48.
DOI: 10.1007/978-3-642-16657-0
Google Scholar
[18]
S. Laflamme, V.D. Kollipara, H.S. Saleem, G. Kofod, Large-scale surface strain gauge for health monitoring of civil structures, Proc. of SPIE - The International Society for Optical Engineering, 8347,83471P (2012).
DOI: 10.1117/12.913187
Google Scholar
[19]
A. D'Alessandro, F. Ubertini, E. García-Macías, R. Castro-Triguero, A. Downey, S. Laflamme, A. Meoni, A. L. Materazzi, Static and Dynamic Strain Monitoring of Reinforced Concrete Components through Embedded Carbon Nanotube Cement-Based Sensors, Shock and Vibration, Volume 2017 (2017).
DOI: 10.1155/2017/3648403
Google Scholar
[20]
G.Y. Li, P.M. Wang, X. Zhao, Pressure-sensitive properties and microstructure of carbon nanotube reinforced cement composites, Cem. Concr. Comp. vol. 29, pp.377-382, (2007).
DOI: 10.1016/j.cemconcomp.2006.12.011
Google Scholar
[21]
X. Fu, W. Lu, D.D.L. Chung, Improving the strain-sensing ability of carbon fiber-reinforced cement by ozone treatment of the fibers, Cem. Concr. Res., vol. 28, no. 6, pp.183-187, (1997).
DOI: 10.1016/s0008-8846(97)00265-2
Google Scholar
[22]
B. Han, S. Ding, X. Yu, Intrinsic self-sensing concrete and structures: A review, Measurements vol. 59, pp.110-128, (2015).
Google Scholar
[23]
Kırgız, M.S., Fresh and Hardened Properties of Green Binder Concrete Containing Marble Powder and Brick Powder,, European Journal of Environmental and Civil Engineering, Issue Sup1: Supplement: Green Binder Materials for Civil Engineering and Architecture Applications, 20, (2016b), 64-101.
DOI: 10.1080/19648189.2016.1246692
Google Scholar
[24]
H. Li, H. Xiao, J. Ou, Effect of compressive strain on electrical resistivity of carbon black-filled cement-based composites, Cem. Concr. Comp., vol. 28, pp.824-828, (2006).
DOI: 10.1016/j.cemconcomp.2006.05.004
Google Scholar
[25]
O. Galao, F.J. Baeza, E. Zornoza and P. Garcés, Strain and damage sensing properties on multifunctional cement composites with CNF admixture, Cem. Conc. Comp., vol. 53, pp.162-169, (2014).
DOI: 10.1016/j.cemconcomp.2013.11.009
Google Scholar
[26]
Kırgız, M.S., Advancements in Mechanical and Physical Properties for Marble Powder–Cement Composites Strengthened by Nanostructured Graphite Particles,, Mechanics of Materials, 92(1), (2016c), p.223–234.
DOI: 10.1016/j.mechmat.2015.09.013
Google Scholar
[27]
Kırgız, M.S., Strength Gain Mechanisms of Blended-Cements Containing Marble Powder and Brick Powder,, KSCE Journal of Civil Engineering, 19(1), (2015e), 165–172.
DOI: 10.1007/s12205-014-0557-4
Google Scholar
[28]
S. Wen, D.D.L. Chung, Partial Replacement of Carbon Fiber by Carbon Black in Multifunctional Cement-Matrix Composites, Carbon vol. 45, no. 3, pp.505-513, (2007).
DOI: 10.1016/j.carbon.2006.10.024
Google Scholar
[29]
Kırgız, M.S., Use of ultrafine marble and brick particles as raw materials in cement manufacturing,, Materials and Structures, 48(9), (2015f), 2929–2941.
DOI: 10.1617/s11527-014-0368-6
Google Scholar
[30]
Du, H., Gao, H. J. and Pang, S. D. (2016). Improvement in concrete resistance against water and chloride ingress by adding graphene nanoplatelet, Cem. Concr. Res., 83, pp.114-123.
DOI: 10.1016/j.cemconres.2016.02.005
Google Scholar
[31]
Metaxa, Z. S., Konsta-Gdoutos, M. S. and Shah, S. P. (2013). Carbon nanofiber cementitious composites: Effect of debulking procedure on dispersion and reinforcing efficiency, Cem Conc. Comp, 36, pp.25-32.
DOI: 10.1016/j.cemconcomp.2012.10.009
Google Scholar
[32]
Xie, P., Gu, P. and Beaudoin, J. J. (1996). Electrical percolation phenomena in cement composites containing conductive fibres, J. Mater. Sci., 31, pp.4093-4097.
DOI: 10.1007/bf00352673
Google Scholar
[33]
A. Downey, A., D'Alessandro, A., Ubertini, F., Laflamme, S., Geiger, R. Biphasic DC measurement approach for enhanced measurement stability and multi-channel sampling of self-sensing multi-functional structural materials doped with carbon-based additives, (2017).
DOI: 10.1088/1361-665x/aa6b66
Google Scholar
[34]
E. García-Macías, E., Downey, A., D'Alessandro, A., Castro-Triguero, R., Laflamme, S., Ubertini, F. Enhanced lumped circuit model for smart nanocomposite cement-based sensors under dynamic compressive loading conditions (2017).
DOI: 10.1016/j.sna.2017.04.004
Google Scholar
[35]
F. Ubertini, S. Laflamme, A. D'Alessandro, Smart cement paste with carbon nanotubes, (2016).
Google Scholar
[36]
Kırgız, M. S., Chemical properties of blended cement pastes,, Journal of Construction Engineering and Management, 137(12), (2011), 1036–1042.
Google Scholar
[37]
T. Page McAndrew, P. Laurent, M. Havel, C. Roger, Arkema graphistrength® multi-walled carbon nanotubes, Technical Proceedings of the 2008 NSTI Nanotechnology Conference and Trade Show, NSTI-Nanotech, Nanotechnology 2008 1 (2008) 47–50.
Google Scholar
[38]
J-L. Le, H. Du, S.D. Pang, Use of 2D Graphene Nanoplatelets (GNP) in cement composites for structural health evaluation, Compos. Part B-Eng 67 (2014) 555–563.
DOI: 10.1016/j.compositesb.2014.08.005
Google Scholar