Impact Behaviour of Hybrid Carbon Fibre Composites Reinforced with Silica Micro- and Functionalized Nanoparticles

Article Preview

Abstract:

This work investigates the effect of silica nanoparticles functionalized with poly-diallyldimethylammonium chloride (PDDA) and silica microparticle inclusions (1.0 wt% and 3.5 wt%) on the impact resistance of hybrid carbon fibre reinforced composite laminates (HCFRCs) and tensile modulus of particle reinforced polymers (PRPs) via Full-Factorial Design of Experiments. The data were analysed with Analysis of Variance (ANOVA). The inclusion of particles led to reduced impact absorption of HCFRCs, except for composites with 1.0 wt% of silica in microscale, which provides an increase of 11.75% in the impact resistance. Microstructural analysis of fractured impact samples revealed pull-out as the predominant fracture mode in 1.0 wt% silica microparticle composites. Such mechanism leads to impact energy dissipation which may explain the increased impact resistance of these samples.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1-9

Citation:

Online since:

June 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Wang, X. Ji, A. Roy, V. V. Silberschmidt, Z. Chen, Shear strength and fracture toughness of carbon fibre/epoxy interface: effect of surface treatment, Mater. Des. 85 (2015) 800–807.

DOI: 10.1016/j.matdes.2015.07.104

Google Scholar

[2] T.P. Sathishkumar, S. Satheeshkumar, J. Naveen, Glass fiber-reinforced polymer composites - A review, J. Reinf. Plast. Compos. 33 (2014) 1258–1275.

DOI: 10.1177/0731684414530790

Google Scholar

[3] C. Dong, H. Aa. Ranaweera-Jayawardena, I.J. Davies, Flexural properties of hybrid composites reinforced by S-2 glass and T700S carbon fibres, Compos. Part B Eng. 43 (2012) 573–581.

DOI: 10.1016/j.compositesb.2011.09.001

Google Scholar

[4] R.B. Torres, J.C. dos Santos, T.H. Panzera, A.L. Christoforo, P.H. Ribeiro Borges, F. Scarpa, Hybrid glass fibre reinforced composites containing silica and cement microparticles based on a design of experiment, Polym. Test. 57 (2017) 87–93.

DOI: 10.1016/j.polymertesting.2016.11.012

Google Scholar

[5] A. Godara, L. Gorbatikh, G. Kalinka, A. Warrier, O. Rochez, L. Mezzo, F. Luizi, A.W. van Vuure, S. V. Lomov, I. Verpoest, Interfacial shear strength of a glass fiber/epoxy bonding in composites modified with carbon nanotubes, Compos. Sci. Technol. 70 (2010) 1346–1352.

DOI: 10.1016/j.compscitech.2010.04.010

Google Scholar

[6] B.H. Rutz, J.C. Berg, Electrostatic deposition of silica nanoparticles between E-glass fibers and an epoxy resin, J. Appl. Polym. Sci. 132 (2015) 1–9.

DOI: 10.1002/app.41516

Google Scholar

[7] N. Kistaiah, C. Udaya Kiran, G. Ramachandra Reddy, M. Sreenivasa Rao, Mechanical characterization of hybrid composites: A review, J. Reinf. Plast. Compos. 33 (2014) 1364–1372.

DOI: 10.1177/0731684413513050

Google Scholar

[8] J.C. Santos, L.M.G. Vieira, T.H. Panzera, A.L. Christoforo, M.A. Schiavon, F. Scarpa, Hybrid silica micro and PDDA/nanoparticles-reinforced carbon fibre composites, J. Compos. Mater. 51 (2017) 783–795.

DOI: 10.1177/0021998316655392

Google Scholar

[9] Y. Cao, J. Cameron, Impact Properties of Silica Particle Modified Glass Fiber Reinforced Epoxy Composite, J. Reinf. Plast. Compos. 25 (2006) 761–769.

DOI: 10.1177/0731684406063536

Google Scholar

[10] J.C. Santos, L.M.G. Vieira, T.H. Panzera, M. Aa. Schiavon, A.L. Christoforo, F. Scarpa, Hybrid glass fibre reinforced composites with micro and poly-diallyldimethylammonium chloride (PDDA) functionalized nano silica inclusions, Mater. Des. 65 (2014) 543–549.

DOI: 10.1016/j.matdes.2014.09.052

Google Scholar

[11] M. Li, Y. Gu, Y. Liu, Y. Li, Z. Zhang, Interfacial improvement of carbon fiber/epoxy composites using a simple process for depositing commercially functionalized carbon nanotubes on the fibers, Carbon N. Y. 52 (2013) 109–121.

DOI: 10.1016/j.carbon.2012.09.011

Google Scholar

[12] Y. Zeng, H.-Y. Liu, Y.-W. Mai, X.-S. Du, Improving interlaminar fracture toughness of carbon fibre/epoxy laminates by incorporation of nano-particles, Compos. Part B Eng. 43 (2012) 90–94.

DOI: 10.1016/j.compositesb.2011.04.036

Google Scholar

[13] J.-S. Jang, J. Varischetti, G.W. Lee, J. Suhr, Experimental and analytical investigation of mechanical damping and CTE of both SiO2 particle and carbon nanofiber reinforced hybrid epoxy composites, Compos. Part A Appl. Sci. Manuf. 42 (2011) 98–103.

DOI: 10.1016/j.compositesa.2010.10.008

Google Scholar

[14] V.C.S. Chandrasekaran, S.G. Advani, M.H. Santare, Role of processing on interlaminar shear strength enhancement of epoxy/glass fiber/multi-walled carbon nanotube hybrid composites, Carbon N. Y. 48 (2010) 3692–3699.

DOI: 10.1016/j.carbon.2010.06.010

Google Scholar

[15] U. Szeluga, B. Kumanek, B. Trzebicka, Synergy in hybrid polymer/nanocarbon composites. A review, Compos. Part A Appl. Sci. Manuf. 73 (2015) 204–231.

DOI: 10.1016/j.compositesa.2015.02.021

Google Scholar

[16] Y. Cao, J. Cameron, Flexural and shear properties of silica particle modified glass fiber reinforced epoxy composite, J. Reinf. Plast. Compos. 25 (2006) 347–359.

DOI: 10.1177/0731684405056450

Google Scholar

[17] T. Ramanathan, A. Bismarck, E. Schulz, K. Subramanian, Investigationn of the influence of surface-activated carbon fibres on debonding energy and frictional stress in polymer-matrix composites by the micro-indentation technique, Compos. Sci. Technol. 61 (2001) 2511–2518.

DOI: 10.1016/s0266-3538(01)00169-5

Google Scholar

[18] J. Jang, H. Yang, The effect of surface treatment on the performance improvement of carbon fiber/polybenzoxazine composites, J. Mater. Sci. 35 (2000) 2297–2303.

Google Scholar

[19] J.L. Tsai, H. Hsiao, Y.L. Cheng, Investigating mechanical behaviors of silica nanoparticle reinforced composites, J. Compos. Mater. 44 (2010) 505–524.

DOI: 10.1177/0021998309346138

Google Scholar

[20] J. Lin, C.M. Ma, N.-H. Tai, W. Chang, C.-C. Tsai, Carbon fiber reinforced phenolic Resin/Silica ceramer composites-processing, mechanical and thermal properties, Polym. Compos. 21 (2000) 305–311.

DOI: 10.1002/pc.10187

Google Scholar

[21] M.F. Uddin, C.T. Sun, Strength of unidirectional glass/epoxy composite with silica nanoparticle-enhanced matrix, Compos. Sci. Technol. 68 (2008) 1637–1643.

DOI: 10.1016/j.compscitech.2008.02.026

Google Scholar

[22] S. Rahmanian, K.S. Thean, A.R. Suraya, M.A. Shazed, M.A. Mohd Salleh, H.M. Yusoff, Carbon and glass hierarchical fibers: Influence of carbon nanotubes on tensile, flexural and impact properties of short fiber reinforced composites, Mater. Des. 43 (2013) 10–16.

DOI: 10.1016/j.matdes.2012.06.025

Google Scholar

[23] K.G. Dassios, a Review of the Pull-Out Mechanism in the Fracture of Brittle- Matrix Fibre-Reinforced Composites, Adv. Compos. Lett. (2007) 17–24.

DOI: 10.1177/096369350701600102

Google Scholar

[24] L. M G. Vieira, J. C. Santos, T. H. Panzera, A. L. Christoforo, V. Mano, J. C. C. Rubio, F. Scarpa, Hybrid Composites Based on Sisal Fibers and Silica Nanoparticles, Polymer Composites 39 (2018) 146-156.

DOI: 10.1002/pc.23915

Google Scholar

[25] V. Eskizeybek, H. Ulus, H.B. Kaybal, Ö.S. Şahin, A. Avcı, Static and dynamic mechanical responses of CaCO3 nanoparticle modified epoxy/carbon fiber nanocomposites, Compos. Part B Eng. 140 (2018) 223–231.

DOI: 10.1016/j.compositesb.2017.12.013

Google Scholar

[26] R. Jeyakumar, P. S. Sampath, R. Ramamoorthi, T. Ramakrishnan, Structural, morphological and mechanical behaviour of glass fibre reinforced epoxy nanoclay composites, Int. J. Adv. Manuf. Technol. 93 (2017) 527-535.

DOI: 10.1007/s00170-017-0565-x

Google Scholar

[27] L.Chang, Z. Zhang,and C. Breidt, Impact Resistance of Short Fibre/Particle Reinforced Epoxy, Applied Composite Materials 11 (2004) 1-15.

DOI: 10.1023/b:acma.0000003824.12136.25

Google Scholar

[28] V. Carvelli, A. Betti, T. Fujii, Fatigue and Izod impact performance of carbon plain weave textile reinforced epoxy modified with cellulose microfibrils and rubber nanoparticles, Composites: Part A 84 (2016) 26-35.

DOI: 10.1016/j.compositesa.2016.01.005

Google Scholar

[29] P. V. Vasconcelos, F. J. Lino, A. Magalhães, R. J. L. Neto, Impact fracture study of epoxy-based composites with aluminium particles and milled fibres, Journal of Materials Processing Technology 170 (2005) 277-283.

DOI: 10.1016/j.jmatprotec.2005.05.006

Google Scholar

[30] J. Cesar dos Santos, T. Hallak Panzera, A. Luiz Christoforo, K. de Oliveira Vieira, M. Antonio Schiavon, F. Antonio Rocco Lahr, Thermoset Polymer Reinforced With Silica Micro and Nanoparticles, J. Test. Eval. 44 (2016) 20130331.

DOI: 10.1520/jte20130331

Google Scholar

[31] D.C. Montgomery, Introduction to statistical quality control, John Wiley & Sons, USA, (1997).

Google Scholar

[32] ISO 179-1:2010: Plastics – Determination of Charpy impact properties – Part 1: Non-instrumented impact test, (2010).

DOI: 10.3403/30192289

Google Scholar

[33] ASTM International, Standard test method for tensile properties of plastics, ASTM Int. 8 (2014) 46–58.

Google Scholar

[34] Z. Peng, L.X. Kong, S.-D. Li, Y. Chen, M.F. Huang, Self-assembled natural rubber/silica nanocomposites: Its preparation and characterization, Compos. Sci. Technol. 67 (2007) 3130–3139.

DOI: 10.1016/j.compscitech.2007.04.016

Google Scholar

[35] I.N. Seekkuarachchi, K. Tanaka, H. Kumazawa, Dispersion mechanism of nano-particulate aggregates using a high pressure wet-type jet mill, Chem. Eng. Sci. 63 (2008) 2341–2366.

DOI: 10.1016/j.ces.2008.01.004

Google Scholar

[36] T. A. Lenda and S. Mridha, Impact Strength of Carbon Reinforced Epoxy Composite at Different Temperatures, Advanced Materials Research, 264-265 (2011) 451-456.

DOI: 10.4028/www.scientific.net/amr.264-265.451

Google Scholar

[37] Y. Zheng, Study of SiO2 Nanoparticles on the Improved Performance of Epoxy and Fiber Composites, J. Reinf. Plast. Compos. 24 (2005) 223–233.

Google Scholar

[38] W.J. Cantwell, W. Tato, H.H. Kausch, R. Jacquemet, The Influence of a Fiber-Matrix Coupling Agent on the Properties of a Glass Fiber / Polypropylene GMT, October. (1992) 304–317.

DOI: 10.1177/089270579200500403

Google Scholar