Silica Modified Membrane for Carbon Dioxide Separation from Natural Gas

Article Preview

Abstract:

A dip-coating technique was applied to prepare a selective membrane on a commercial ceramic mesoporous support. Single gas components used for permeance and selectivity were CH4, CO2, H2, He, N2, and O2 (BOC UK) with at least 99.999 (% v/v) purity. The permeances and selectivities were obtained at room temperature and transmembrane pressure differences between 0.05 up to 5.0 barg. Gas permeation experiments showed the permeance of CO2 to be strongly influenced by surface diffusion mechanism. Single gas experiment showed linear flow dependence on the inverse square root of molecular weight at room temperature and 1.0 barg. The single gas selectivities were found to be higher than the ideal Knudsen separation mechanism. The highest CO2/CH4 selectivity value of 24.07 was obtained at 0.7 barg and room temperature.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

43-52

Citation:

Online since:

June 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Yildirim, & R, Hughes. An experimental study of CO2 separation using a silica based composite membrane. Trans IChem, 81, B, pp.257-261, (2003).

DOI: 10.1205/095758203322299789

Google Scholar

[2] http://www.telegraph.co.uk/earth/environment/climatechange/9717280/Doha–Latest-figuressh-ow-global-CO2emissions- are-rising.html [Accessed 10th February 2013].

Google Scholar

[3] International Energy Outlook 2013, http://www.iea.org/Textbase/npsum/WEO 2013 SUM.pdf. [Accessed 10th February 2013].

Google Scholar

[4] M. R. Othman, H. Mukhtar, & A. L. Ahmad. Gas permeation characteristics across nano-Porous inorganic membranes. IIUM Engineering Journal, vol. 5, pp.17-33, (2004).

DOI: 10.31436/iiumej.v5i2.379

Google Scholar

[5] M. N. Kajama, N. C. Nwogu, & E. Gobina, Gas Permeation Study Using Porous Ceramic Membranes. Energy and Environment Research journal, vol. 4(3), pp.43-49, (2014).

DOI: 10.5539/eer.v4n3p43

Google Scholar

[6] M. Mulder. Basic Principles of Membrane Technology, Second Edition, Centre of Membrane Science and Technology. Kluwer Academic Publishers, University of Twente, Enschede, The Netherlands, p.227, (1996).

Google Scholar

[7] N. C. Nwogu, E. Gobina, & M. N. Kajama. Improved carbon dioxide capture using nanostructured ceramic membranes. Low Carbon Economy, vol. 4, pp.125-128, (2013).

DOI: 10.4236/lce.2013.43013

Google Scholar

[8] Y. Yildirim, & R. Hughes. The Efficient Combustion of O-xylene in a knudsen Controlled Catalytic Membrane Reactor. Trans IChemE. 80(Part B): pp.159-164, (2002).

DOI: 10.1205/095758202317576265

Google Scholar

[9] L. Zhang, I. Park, K. Shqau, W.S. Winston Ho, & H. Verweij. Supported inorganic membranes. Promises & Challenges, Vol. 61 pp.61-71, (2009).

DOI: 10.1007/s11837-009-0054-2

Google Scholar

[10] A. L. Ahmad, & N. N. N. Mustafa. Sol-gel synthesized of nanocomposite palladium-alumina ceramic membrane for H2 permeability: preparation and characterization. International Journal of Hydrogen Energy, Vol. 32 pp.2010-2021, (2007).

DOI: 10.1016/j.ijhydene.2006.08.046

Google Scholar

[11] http://ufdcimages.uflib.ufl.edu/AA/00/00/03/83/00141/AA00000383_00141_00062.pdf. [Acc-essed on 22/05/2016].

Google Scholar

[12] Kim, Y., Kusakabe, K., Morooka, S., & Yang, S. Preparation of microporous silica membranes for gas separation. Korean Journal of Chemical Engineering, 18, pp.106-112, (2001).

DOI: 10.1007/bf02707206

Google Scholar

[13] Ohwoka, A., Ogbuke, I., & Gobina, E. Performance of pure and mixed gas transport in reconfigured hybrid inorganic membranes part 2. Membrane Technology, pp.7-9, (2012).

DOI: 10.1016/s0958-2118(12)70126-x

Google Scholar

[14] C. A. Scholes, S. E. Kentish, & G. W. Stevens. Carbon dioxide separation through polymeric membrane systems for flue gas applications. Recent Patents on Chemical Engineering, vol. 1, pp.52-66, (2008).

DOI: 10.2174/2211334710801010052

Google Scholar

[15] Wall, Y., Ompe-Aime-Mudimu., Braun, G., & Brunner, G. Gas transport through ceramic membranes under super-critical conditions. Desalination, 250, pp.1056-1059, (2010).

DOI: 10.1016/j.desal.2009.09.107

Google Scholar

[16] Jae-Hyun So, S.M. Yang & S. B. Park. Preparation of silica–alumina composite membranes for hydrogen separation by multi-step pore modifications. Journal of Membrane Science, Vol. 147, pp.147-158, (1998).

DOI: 10.1016/s0376-7388(98)00132-x

Google Scholar

[17] F. I. Khan, & A. K. Ghoshal. Removal of volatile organic compounds from polluted air. Journal of Loss Prevention in the Process Industries, 13(6), pp.527-545, (2000).

DOI: 10.1016/s0950-4230(00)00007-3

Google Scholar

[18] A. F. M. Leenaars & A. J. Burggraaf. The Preparation and Characterization of Alumina Membranes with Ultrafine Pores: Part 3. The permeability of pure liquids. Journal of Membrane Science, Vol. 24, pp.245-260, 1985a.

DOI: 10.1016/s0376-7388(00)82243-7

Google Scholar

[19] Smart, S. Liu, S. Serra, J. M. Diniz da Costa, J. C. Iulianelli, A. & Basile A. Porous ceramic membranes for membrane reactors. (2013).

DOI: 10.1533/9780857097330.2.298

Google Scholar

[20] G. Q. Lu, J. C. Diniz da Costa, M. Duke, S. Giessler, R. Socolow, R. H. Williams, & T. Kreutz. Inorganic membranes for hydrogen production and purification: A critical review and perspective. Journal of Colloid and Interface Science, vol. 314, pp.589-603, (2007).

DOI: 10.1016/j.jcis.2007.05.067

Google Scholar

[21] J. D. Way, & D. L. Roberts. Hollow Fiber Inorganic Membranes for Gas Separations. Sep. Sci. Tech., 27(1), pp.29-41, (1992).

Google Scholar

[22] E. Gobina, Apparatus and Methods for Separating Gases. United States Granted Patent No. US 7048778, May 23, (2006).

Google Scholar

[23] P. Huang, N. Xu, J. Shi, & Y. S. Lin. Recovery of volatile organic compounds from air by ceramic membranes. Ind. Eng. Chem. Res., vol. 36, pp.3815-3820, (1997).

DOI: 10.1021/ie960760b

Google Scholar

[24] A. Ohwoka, I. Ogbuke, & E. Gobina. Performance of pure and mixed gas transport in reconfigured hybrid inorganic membranes part 1. Membrane Technology, pp.7-12, (2012).

DOI: 10.1016/s0958-2118(12)70126-x

Google Scholar

[25] B. A. McCool, N. Hill, J. DiCarlo, & W. J. DeSisto. Synthesis and characterization of mesoporous silica membranes via dip-coating and hydrothermal deposition techniques. Journal of Membrane Science, vol. 218, pp.55-67, (2003).

DOI: 10.1016/s0376-7388(03)00136-4

Google Scholar

[26] M. Asaeda, & S. Yamasaki. Separation of Inorganic/Organic Gas Mixtures by Porous Silica Membranes. Sep. Purif. Tech., 25, pp.151-159, (2001).

DOI: 10.1016/s1383-5866(01)00099-5

Google Scholar