[1]
W.R. Osorio, D.J. Moutinho, L.C. Peixoto, I.L. Ferreira, A. Garcia, Macrosegregation and microstructure dendritic array affecting the electrochemical behavior of ternary Al-Cu-Si alloys, Electrochimica Acta 56 (2011) 8412-8421.
DOI: 10.1016/j.electacta.2011.07.028
Google Scholar
[2]
W.R. Osorio, J.E. Spinelli, C.M.A. Freire, M.B. Cardona, A.Garcia, The roles of Al2Cu and of dendritic refinement on surface corrosion resistance of hypoeutectic Al–Cu alloys immersed in H2SO4, Journal of Alloys and Compounds 443 (2007) 87-93.
DOI: 10.1016/j.jallcom.2006.10.010
Google Scholar
[3]
G. García-García, J. Espinoza-Cuadra, H. Mancha-Molinar, Copper content and cooling rate effects over second phase particles behavior in industrial aluminum–silicon alloy 319, Materials & Design 28 (2007) 428-433.
DOI: 10.1016/j.matdes.2005.09.021
Google Scholar
[4]
J.M.V. Quaresma, C.A. Santos, A. Garcia, Correlation between unsteady-state solidification conditions, dendrite spacings, and mechanical properties of Al-Cu alloys, Metallurgical and Materials Transactions A 31 (2000) 3167-3178.
DOI: 10.1007/s11661-000-0096-0
Google Scholar
[5]
L. Wang, M. Makhlouf, D. Apelian, Aluminium die casting alloys: alloy composition, microstructure, and properties-performance relationships, International Materials Reviews 40 (1995) 221-238.
DOI: 10.1179/imr.1995.40.6.221
Google Scholar
[6]
Z. Li, A.M. Samuel, F.H. Samuel, C. Ravindran, S. Valtierra, H.W. Doty, Parameters controlling the performance of AA319-type alloys: Part I. Tensile properties, Materials Science and Engineering A 367 (2004) 96-110.
DOI: 10.1016/j.msea.2003.09.090
Google Scholar
[7]
M. Tash, F.H. Samuel, F. Mucciardi, H.W. Doty, Effect of metallurgical parameters on the hardness and microstructural characterization of as-cast and heat-treated 356 and 319 aluminum alloys, Materials Science and Engineering A 443 (2007) 185-201.
DOI: 10.1016/j.msea.2006.08.054
Google Scholar
[8]
F.J. Tavitas-Medrano, J.E. Gruzleski, F.H. Samuel, S. Valtierra, H.W. Doty, Effect of Mg and Sr-modification on the mechanical properties of 319-type aluminum cast alloys subjected to artificial aging, Materials Science and Engineering A 480 (2008).
DOI: 10.1016/j.msea.2007.09.002
Google Scholar
[9]
W.R. Osorio, J.E. Spinelli, I.L. Ferreira, A. Garcia, The roles of macrosegregation and of dendritic array spacings on the electrochemical behavior of an Al–4.5 wt.% Cu alloy, Electrochimica Acta 52 (2007) 3265-3273.
DOI: 10.1016/j.electacta.2006.10.004
Google Scholar
[10]
P.R. Goulart, K.S. Cruz, J.E. Spinelli, I.L. Ferreira, N. Cheung, A. Garcia, Cellular growth during transient directional solidification of hypoeutectic Al–Fe alloys, Journal of Alloys and Compounds 470 (2009) 589–599.
DOI: 10.1016/j.jallcom.2008.03.026
Google Scholar
[11]
E.S. Meza, F. Bertelli, P.R. Goulart, N. Cheung, A. Garcia, The effect of the growth rate on microsegregation: Experimental investigation in hypoeutectic Al–Fe and Al–Cu alloys directionally solidified, Journal of Alloys and Compounds 561 (2013).
DOI: 10.1016/j.jallcom.2013.01.180
Google Scholar
[12]
G. Liu, X. Li, Y. Su, D. Liu, J. Guo, H. Fu, Microstructure, microsegregation pattern and the formation of B2 phase in directionally solidified Ti–46Al–8Nb alloy, Journal of Alloys and Compounds 541 (2012) 275–282.
DOI: 10.1016/j.jallcom.2012.07.023
Google Scholar
[13]
P.R. Goulart, J.E. Spinelli, N. Cheung, A. Garcia, The effects of cell spacing and distribution of intermetallic fibers on the mechanical properties of hypoeutectic Al–Fe alloys, Materials Chemistry and Physics 119 (2010) 272–278.
DOI: 10.1016/j.matchemphys.2009.08.063
Google Scholar
[14]
S.M. Skolianos, G. Kiourtsidis, T. Xatzifotiou, Effect of applied pressure on the microstructure and mechanical properties of squeeze-cast aluminum AA6061 alloy, Materials Science and Engineering A 231 (1997) 17-24.
DOI: 10.1016/s0921-5093(97)00067-1
Google Scholar
[15]
B. Dutta, M. Rettenmayr, Effect of cooling rate on the solidification behaviour of Al–Fe–Si alloys, Materials Science and Engineering A 283 (2000) 218–224.
DOI: 10.1016/s0921-5093(00)00742-5
Google Scholar
[16]
Y. Zhang, Y. Liu, Y. Han, C. Wei, Z. Gao, The role of cooling rate in the microstructure of Al–Fe–Si alloy with high Fe and Si contents, Journal of Alloys and Compounds 473 (2009) 442–445.
DOI: 10.1016/j.jallcom.2008.06.004
Google Scholar
[17]
J.Y. Hwang, R. Banerjee, H.W. Doty, M.J. Kaufman, The effect of Mg on the structure and properties of Type 319 aluminum casting alloys, Acta Materialia 57 (2009) 1308–1317.
DOI: 10.1016/j.actamat.2008.11.021
Google Scholar
[18]
F.J. Tavitas-Medrano, J.E. Gruzleski, F.H. Samuel, S. Valtierra, H.W. Doty, Effect of Mg and Sr-modification on the mechanical properties of 319-type aluminum cast alloys subjected to artificial aging, Materials Science and Engineering A 480 (2008).
DOI: 10.1016/j.msea.2007.09.002
Google Scholar
[19]
J.Y. Hwang, H.W. Doty, M.J. Kaufman, The effects of Mn additions on the microstructure and mechanical properties of Al–Si–Cu casting alloys, Materials Science and Engineering A 488 (2008) 496–504.
DOI: 10.1016/j.msea.2007.12.026
Google Scholar
[20]
I. Dinaharan, R. Nelson, S.J. Vijay, E.T. Akinlabi, Microstructure and wear characterization of aluminum matrix composites reinforced with industrial waste fly ash particulates synthesized by friction stir processing, Materials Characterization 118 (2016).
DOI: 10.1016/j.matchar.2016.05.017
Google Scholar
[21]
X. Zhu, Y. Zhao, M. Wu, H. Wang, Q. Jiang, Fabrication of 2014 aluminum matrix composites reinforced with untreated and carboxyl-functionalized carbon nanotubes, Journal of Alloys and Compounds 674 (2016) 145-152.
DOI: 10.1016/j.jallcom.2016.03.036
Google Scholar
[22]
H. Zare, M. Jahedi, M.R. Toroghinejad, M. Meratian, M. Knezevic, Microstructure and mechanical properties of carbon nanotubes reinforced aluminum matrix composites synthesized via equal-channel angular pressing, Materials Science and Engineering A 670 (2016).
DOI: 10.1016/j.msea.2016.06.027
Google Scholar
[23]
L. Yuan, J. Han, J. Liu, Z. Jiang, Mechanical properties and tribological behavior of aluminum matrix composites reinforced with in-situ AlB2 particles, Tribology International 98 (2016) 41-47.
DOI: 10.1016/j.triboint.2016.01.046
Google Scholar
[24]
S. Skolianos, T.Z. Kattamis, Tribological properties of SiCp-reinforced Al-4.5%Cu-1.5%Mg alloy composites, Materials Science and Engineering A 163 (1993) 107-113.
DOI: 10.1016/0921-5093(93)90584-2
Google Scholar
[25]
C. Brito, T. Vida, E. Freitas, N. Cheung, J.E. Spinelli, A. Garcia, Cellular/dendritic arrays and intermetallic phases affecting corrosion and mechanical resistances of an Al-Mg-Si alloy, Journal of Alloys and Compounds 673 (2016) 220-230.
DOI: 10.1016/j.jallcom.2016.02.161
Google Scholar
[26]
G.V. Seretis, G. Kouzilos, A.K. Polyzou, D.E. Manolakos, C.G. Provatidis, Effect of Graphene Nanoplatelets Fillers on Mechanical Properties and Microstructure of Cast Aluminum Matrix Composites, Nano Hybrids and Composites 15 (2017) 26-35.
DOI: 10.4028/www.scientific.net/nhc.15.26
Google Scholar