Effect of Stainless Steel Flakes Content on Mechanical Properties and Microstructure of Cast 96.66% Pure Aluminum

Article Preview

Abstract:

Stainless steel flakes-reinforced cast aluminum matrix composites were produced using aluminum alloy of 96.66% purity as matrix material and different steel flakes contents as reinforcements. Aluminum matrix specimens with no steel flakes fillers addition were also produced for performance comparison. All specimens were cast into a slightly heated rectangular quenched steel mold, the temperature of which was 35 °C. Both matrix aluminum specimens and aluminum matrix composite specimens underwent tensile and bending tests as well as hardness measurements and microstructural investigation. As observed through microstructural examination, the interdendritic regions do not seem to be affected by steel flakes addition on their at% chemical composition, which remains Al:Fe:Mn:Mg ; 92.28:3.75:2.96:1.01, but only on their size. An increase of the flexure strength of about 20% was achieved by steel flakes-reinforcement of the matrix aluminum. In the case of the highest wt% addition, groups of steel flakes of high directivity towards solidification kernels were observed. These steel flakes group formations resulted in an impressive hardness increase, performing as hard support elements.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

11-19

Citation:

Online since:

June 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W.R. Osorio, D.J. Moutinho, L.C. Peixoto, I.L. Ferreira, A. Garcia, Macrosegregation and microstructure dendritic array affecting the electrochemical behavior of ternary Al-Cu-Si alloys, Electrochimica Acta 56 (2011) 8412-8421.

DOI: 10.1016/j.electacta.2011.07.028

Google Scholar

[2] W.R. Osorio, J.E. Spinelli, C.M.A. Freire, M.B. Cardona, A.Garcia, The roles of Al2Cu and of dendritic refinement on surface corrosion resistance of hypoeutectic Al–Cu alloys immersed in H2SO4, Journal of Alloys and Compounds 443 (2007) 87-93.

DOI: 10.1016/j.jallcom.2006.10.010

Google Scholar

[3] G. García-García, J. Espinoza-Cuadra, H. Mancha-Molinar, Copper content and cooling rate effects over second phase particles behavior in industrial aluminum–silicon alloy 319, Materials & Design 28 (2007) 428-433.

DOI: 10.1016/j.matdes.2005.09.021

Google Scholar

[4] J.M.V. Quaresma, C.A. Santos, A. Garcia, Correlation between unsteady-state solidification conditions, dendrite spacings, and mechanical properties of Al-Cu alloys, Metallurgical and Materials Transactions A 31 (2000) 3167-3178.

DOI: 10.1007/s11661-000-0096-0

Google Scholar

[5] L. Wang, M. Makhlouf, D. Apelian, Aluminium die casting alloys: alloy composition, microstructure, and properties-performance relationships, International Materials Reviews 40 (1995) 221-238.

DOI: 10.1179/imr.1995.40.6.221

Google Scholar

[6] Z. Li, A.M. Samuel, F.H. Samuel, C. Ravindran, S. Valtierra, H.W. Doty, Parameters controlling the performance of AA319-type alloys: Part I. Tensile properties, Materials Science and Engineering A 367 (2004) 96-110.

DOI: 10.1016/j.msea.2003.09.090

Google Scholar

[7] M. Tash, F.H. Samuel, F. Mucciardi, H.W. Doty, Effect of metallurgical parameters on the hardness and microstructural characterization of as-cast and heat-treated 356 and 319 aluminum alloys, Materials Science and Engineering A 443 (2007) 185-201.

DOI: 10.1016/j.msea.2006.08.054

Google Scholar

[8] F.J. Tavitas-Medrano, J.E. Gruzleski, F.H. Samuel, S. Valtierra, H.W. Doty, Effect of Mg and Sr-modification on the mechanical properties of 319-type aluminum cast alloys subjected to artificial aging, Materials Science and Engineering A 480 (2008).

DOI: 10.1016/j.msea.2007.09.002

Google Scholar

[9] W.R. Osorio, J.E. Spinelli, I.L. Ferreira, A. Garcia, The roles of macrosegregation and of dendritic array spacings on the electrochemical behavior of an Al–4.5 wt.% Cu alloy, Electrochimica Acta 52 (2007) 3265-3273.

DOI: 10.1016/j.electacta.2006.10.004

Google Scholar

[10] P.R. Goulart, K.S. Cruz, J.E. Spinelli, I.L. Ferreira, N. Cheung, A. Garcia, Cellular growth during transient directional solidification of hypoeutectic Al–Fe alloys, Journal of Alloys and Compounds 470 (2009) 589–599.

DOI: 10.1016/j.jallcom.2008.03.026

Google Scholar

[11] E.S. Meza, F. Bertelli, P.R. Goulart, N. Cheung, A. Garcia, The effect of the growth rate on microsegregation: Experimental investigation in hypoeutectic Al–Fe and Al–Cu alloys directionally solidified, Journal of Alloys and Compounds 561 (2013).

DOI: 10.1016/j.jallcom.2013.01.180

Google Scholar

[12] G. Liu, X. Li, Y. Su, D. Liu, J. Guo, H. Fu, Microstructure, microsegregation pattern and the formation of B2 phase in directionally solidified Ti–46Al–8Nb alloy, Journal of Alloys and Compounds 541 (2012) 275–282.

DOI: 10.1016/j.jallcom.2012.07.023

Google Scholar

[13] P.R. Goulart, J.E. Spinelli, N. Cheung, A. Garcia, The effects of cell spacing and distribution of intermetallic fibers on the mechanical properties of hypoeutectic Al–Fe alloys, Materials Chemistry and Physics 119 (2010) 272–278.

DOI: 10.1016/j.matchemphys.2009.08.063

Google Scholar

[14] S.M. Skolianos, G. Kiourtsidis, T. Xatzifotiou, Effect of applied pressure on the microstructure and mechanical properties of squeeze-cast aluminum AA6061 alloy, Materials Science and Engineering A 231 (1997) 17-24.

DOI: 10.1016/s0921-5093(97)00067-1

Google Scholar

[15] B. Dutta, M. Rettenmayr, Effect of cooling rate on the solidification behaviour of Al–Fe–Si alloys, Materials Science and Engineering A 283 (2000) 218–224.

DOI: 10.1016/s0921-5093(00)00742-5

Google Scholar

[16] Y. Zhang, Y. Liu, Y. Han, C. Wei, Z. Gao, The role of cooling rate in the microstructure of Al–Fe–Si alloy with high Fe and Si contents, Journal of Alloys and Compounds 473 (2009) 442–445.

DOI: 10.1016/j.jallcom.2008.06.004

Google Scholar

[17] J.Y. Hwang, R. Banerjee, H.W. Doty, M.J. Kaufman, The effect of Mg on the structure and properties of Type 319 aluminum casting alloys, Acta Materialia 57 (2009) 1308–1317.

DOI: 10.1016/j.actamat.2008.11.021

Google Scholar

[18] F.J. Tavitas-Medrano, J.E. Gruzleski, F.H. Samuel, S. Valtierra, H.W. Doty, Effect of Mg and Sr-modification on the mechanical properties of 319-type aluminum cast alloys subjected to artificial aging, Materials Science and Engineering A 480 (2008).

DOI: 10.1016/j.msea.2007.09.002

Google Scholar

[19] J.Y. Hwang, H.W. Doty, M.J. Kaufman, The effects of Mn additions on the microstructure and mechanical properties of Al–Si–Cu casting alloys, Materials Science and Engineering A 488 (2008) 496–504.

DOI: 10.1016/j.msea.2007.12.026

Google Scholar

[20] I. Dinaharan, R. Nelson, S.J. Vijay, E.T. Akinlabi, Microstructure and wear characterization of aluminum matrix composites reinforced with industrial waste fly ash particulates synthesized by friction stir processing, Materials Characterization 118 (2016).

DOI: 10.1016/j.matchar.2016.05.017

Google Scholar

[21] X. Zhu, Y. Zhao, M. Wu, H. Wang, Q. Jiang, Fabrication of 2014 aluminum matrix composites reinforced with untreated and carboxyl-functionalized carbon nanotubes, Journal of Alloys and Compounds 674 (2016) 145-152.

DOI: 10.1016/j.jallcom.2016.03.036

Google Scholar

[22] H. Zare, M. Jahedi, M.R. Toroghinejad, M. Meratian, M. Knezevic, Microstructure and mechanical properties of carbon nanotubes reinforced aluminum matrix composites synthesized via equal-channel angular pressing, Materials Science and Engineering A 670 (2016).

DOI: 10.1016/j.msea.2016.06.027

Google Scholar

[23] L. Yuan, J. Han, J. Liu, Z. Jiang, Mechanical properties and tribological behavior of aluminum matrix composites reinforced with in-situ AlB2 particles, Tribology International 98 (2016) 41-47.

DOI: 10.1016/j.triboint.2016.01.046

Google Scholar

[24] S. Skolianos, T.Z. Kattamis, Tribological properties of SiCp-reinforced Al-4.5%Cu-1.5%Mg alloy composites, Materials Science and Engineering A 163 (1993) 107-113.

DOI: 10.1016/0921-5093(93)90584-2

Google Scholar

[25] C. Brito, T. Vida, E. Freitas, N. Cheung, J.E. Spinelli, A. Garcia, Cellular/dendritic arrays and intermetallic phases affecting corrosion and mechanical resistances of an Al-Mg-Si alloy, Journal of Alloys and Compounds 673 (2016) 220-230.

DOI: 10.1016/j.jallcom.2016.02.161

Google Scholar

[26] G.V. Seretis, G. Kouzilos, A.K. Polyzou, D.E. Manolakos, C.G. Provatidis, Effect of Graphene Nanoplatelets Fillers on Mechanical Properties and Microstructure of Cast Aluminum Matrix Composites, Nano Hybrids and Composites 15 (2017) 26-35.

DOI: 10.4028/www.scientific.net/nhc.15.26

Google Scholar