Influence of Non-Linear Boussinesq Approximation and Convective Thermal Boundary Condition on MHD Natural Convection Flow of a Couple Stress-Nanofluid in a Porous Medium

Article Preview

Abstract:

Nonlinear density and temperature variation’s role (NDT) on the magnetohydrodynamic (MHD) natural convective flow of couple stress fluid with nanoparticles through a vertical porous channel modeled as Darcy-Forchheimer flow is the purpose of our work. The nanoparticles volume fraction is taken into consideration (Buongiorno model). The nonlinear partial differential equations governing this flow were transformed into ordinary differential equations via the similarity technique and simulated numerically using Matlab, following boundary value problem (BVP4c) code. Graphical illustrations, including non-dimensional velocity, temperature, concentration, nanoparticle’s concentration and numerical results containing Nusselt and Sherwood numbers were presented for different values of the non-linear part of the Boussinesq approximation; couple stress parameter, and the Biot number on the walls.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

45-61

Citation:

Online since:

August 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Fourier, Theorie analytique de la chaleur, par M. Fourier, Chez Firmin Didot, père et fils, 1822.

Google Scholar

[2] A. Fick, Ueber diffusion, Ann. Phys. 170 (1855) 59‑86.

Google Scholar

[3] H. Darcy, Les fontaines publiques de la ville de Dijon: exposition et application..., Victor Dalmont, 1856.

Google Scholar

[4] J.R. Philip, D.A. De Vries, Moisture movement in porous materials under temperature gradients, Trans. Am. Geophys. Union. 38 (1957) 222.

DOI: 10.1029/TR038i002p00222

Google Scholar

[5] O.A. Saunders, Natural Convection in Liquids, Proc. R. Soc. A Math. Phys. Eng. Sci. 172 (1939) 55‑71.

DOI: 10.1098/rspa.1939.0089

Google Scholar

[6] W. Elenbaas, Heat dissipation of parallel plates by free convection, Physica. 9 (1942) 1‑28.

DOI: 10.1016/s0031-8914(42)90053-3

Google Scholar

[7] H. Sithole, H. Mondal, S. Goqo, P. Sibanda, S. Motsa, Numerical simulation of couple stress nanofluid flow in magneto-porous medium with thermal radiation and a chemical reaction, Appl. Math. Comput. 339 (2018) 820‑836.

DOI: 10.1016/j.amc.2018.07.042

Google Scholar

[8] C.O. Bennett, J.E. Myers, Momentum, heat, and mass transfer, McGraw-Hill, (1962).

Google Scholar

[9] A. Bejan, K.R. Khair, Heat and mass transfer by natural convection in a porous medium, Int. J. Heat Mass Transf. 28 (1985) 909‑918.

DOI: 10.1016/0017-9310(85)90272-8

Google Scholar

[10] R.G. Carbonell, S. Whitaker, Heat and mass transfer in porous media, in: Fundam. Transp. Phenom. porous media, Springer, 1984: p.121‑198.

DOI: 10.1007/978-94-009-6175-3_3

Google Scholar

[11] T.L. Bergman, F.P. Incropera, D.P. DeWitt, A.S. Lavine, Fundamentals of heat and mass transfer, John Wiley & Sons, (2011).

Google Scholar

[12] S.~Chandrasekhar, Hydrodynamic and hydromagnetic stability, (1961).

Google Scholar

[13] T.G. Cowling, Magnetohydrodynamics Interscience Publishers^ Inc, New York. (1957).

Google Scholar

[14] M.F. El-Amin, Magnetohydrodynamic free convection and mass transfer flow in micropolar fluid with constant suction, J. Magn. Magn. Mater. 234 (2001) 567‑574.

DOI: 10.1016/S0304-8853(01)00374-2

Google Scholar

[15] K. Vajravelu, Combined free and forced convection in hydromagnetic flows, in vertical wavy channels, with travelling thermal waves, Int. J. Eng. Sci. 27 (1989) 289‑300.

DOI: 10.1016/0020-7225(89)90117-1

Google Scholar

[16] M.A. Seddeek, Heat and mass transfer on a stretching sheet with a magnetic field in a visco-elastic fluid flow through a porous medium with heat source or sink, Comput. Mater. Sci. 38 (2007) 781‑787.

DOI: 10.1016/J.COMMATSCI.2006.05.015

Google Scholar

[17] M.F. El-Amin, Magnetohydrodynamic free convection and mass transfer flow in micropolar fluid with constant suction, J. Magn. Magn. Mater. 234 (2001) 567‑574.

DOI: 10.1016/S0304-8853(01)00374-2

Google Scholar

[18] O.A. Bég, A.Y. Bakier, V.R. Prasad, Numerical study of free convection magnetohydrodynamic heat and mass transfer from a stretching surface to a saturated porous medium with Soret and Dufour effects, Comput. Mater. Sci. 46 (2009) 57‑65.

DOI: 10.1016/j.commatsci.2009.02.004

Google Scholar

[19] A. Raptis, C. Massalas, G. Tzivanidis, Hydromagnetic free convection flow through a porous medium between two parallel plates, Phys. Lett. A. 90 (1982) 288‑289.

DOI: 10.1016/0375-9601(82)90118-9

Google Scholar

[20] G.K. Singha, P.N. Deka, Skin-friction for unsteady free convection MHD flow between two heated vertical parallel plates, Theor. Appl. Mech. 33 (2006) 259‑280.

DOI: 10.2298/tam0604259s

Google Scholar

[21] A.K. Singh, MHD free convective flow through a porous medium between two vertical parallel plates, (2002).

Google Scholar

[22] V.K. Stokes, Couple Stresses in Fluids, Phys. Fluids. 9 (1966) 1709.

DOI: 10.1063/1.1761925

Google Scholar

[23] D. M., S. D., S. B., Analytical solutions of couple stress fluid flows with slip boundary conditions, Alexandria Eng. J. 53 (2014) 723‑730.

DOI: 10.1016/J.AEJ.2014.06.005

Google Scholar

[24] S. Akhtar, N.A. Shah, Exact solutions for some unsteady flows of a couple stress fluid between parallel plates, Ain Shams Eng. J. (2016).

DOI: 10.1016/J.ASEJ.2016.05.008

Google Scholar

[25] V.M. Soundalgekar, Effects of Couple Stresses in Fluids on Dispersion of a Solute in a Channel Flow, Phys. Fluids. 14 (1971) 19.

DOI: 10.1063/1.1693276

Google Scholar

[26] J.C. Umavathi, M.S. Malashetty, Oberbeck convection flow of a couple stress fluid through a vertical porous stratum, Int. J. Non. Linear. Mech. 34 (1999) 1037‑1045.

DOI: 10.1016/S0020-7462(98)00074-2

Google Scholar

[27] R.C. Sharma, K.D. Thakur, On couple-stress fluid heated from below in porous medium in hydromagnetics, Czechoslov. J. Phys. 50 (2000) 753‑758.

DOI: 10.1023/A:1022886903213

Google Scholar

[28] J.-R. Lin, Effects of couple stresses on the lubrication of finite journal bearings, Wear. 206 (1997) 171‑178.

DOI: 10.1016/s0043-1648(96)07357-7

Google Scholar

[29] U.M. Mokhiamer, W.A. Crosby, H.A. El-Gamal, A study of a journal bearing lubricated by fluids with couple stress considering the elasticity of the liner, Wear. 224 (1999) 194‑201.

DOI: 10.1016/s0043-1648(98)00320-2

Google Scholar

[30] D. Srinivasacharya, K. Kaladhar, Soret and dufour effects on free convection flow of a couple stress fluid in a vertical channel with chemical reaction, Chem. Ind. Chem. Eng. Q. 19 (2013) 45‑55.

DOI: 10.2298/CICEQ111231041S

Google Scholar

[31] S.O. Adesanya, C.R. Makhalemele, L. Rundora, Natural convection flow of heat generating hydromagnetic couple stress fluid with time periodic boundary conditions, Alexandria Eng. J. (2017).

DOI: 10.1016/J.AEJ.2017.04.006

Google Scholar

[32] M. Devakar, A. Raje, S. Hande, Unsteady Flow of Couple Stress Fluid Sandwiched Between Newtonian Fluids Through a Channel, Zeitschrift für Naturforsch. A. 73 (2018) 629‑637.

DOI: 10.1515/zna-2017-0434

Google Scholar

[33] T. Hayat, S. Asghar, A. Tanveer, A. Alsaedi, Chemical reaction in peristaltic motion of MHD couple stress fluid in channel with Soret and Dufour effects, Results Phys. 10 (2018) 69‑80.

DOI: 10.1016/j.rinp.2018.04.040

Google Scholar

[34] N.T. Eldabe, S.M. Elshaboury, A.A. Hasan, M.A. Elogail, MHD Peristaltic Flow of a Couple Stress Fluids with Heat and Mass Transfer through a Porous Medium, Innov. Syst. Des. Eng. 3 (2012) 51‑67. https://www.iiste.org/Journals/index.php/ISDE/article/view/1841 (Consulted on October 21st, 2018).

DOI: 10.1016/j.apm.2015.04.043

Google Scholar

[35] D. Srinivasacharya, K. Kaladhar, Natural convection flow of a couple stress fluid between two vertical parallel plates with Hall and ion-slip effects, Acta Mech. Sin. 28 (2012) 41‑50.

DOI: 10.1007/s10409-011-0523-z

Google Scholar

[36] N.T. Eldabe, S.M. Elshaboury, A.A. Hasan, M.A. Elogail, MHD peristaltic flow of a couple stress fluids with heat and mass transfer through a porous medium, Innov. Syst. Des. Eng. 3 (2012).

DOI: 10.1016/j.apm.2015.04.043

Google Scholar

[37] R. Muthuraj, S. Srinivas, R.K. Selvi, Heat and mass transfer effects on MHD flow of a couple-stress fluid in a horizontal wavy channel with viscous dissipation and porous medium, Heat Transf. Res. 42 (2013) 403‑421.

DOI: 10.1002/htj.21040

Google Scholar

[38] H.P. Rani, G.J. Reddy, C.N. Kim, The effect of the couple stress parameter and Prandtl number on the transient natural convection flow over a vertical cylinder, Acta Mech. Sin. 29 (2013) 649‑656.

DOI: 10.1007/s10409-013-0079-1

Google Scholar

[39] K. Kaladhar, Natural Convection Flow of Couple Stress Fluid in a Vertical Channel With Hall and Joule Heating Effects, Procedia Eng. 127 (2015) 1071‑1078.

DOI: 10.1016/J.PROENG.2015.11.465

Google Scholar

[40] S.U.S. Choi, J.A. Eastman, Enhancing thermal conductivity of fluids with nanoparticles, in: United States, 1995. https://www.osti.gov/servlets/purl/196525.

Google Scholar

[41] J. Buongiorno, Convective transport in nanofluids, J. Heat Transfer. 128 (2006) 240‑250. doi:.

DOI: 10.1115/1.2150834

Google Scholar

[42] N.A. Khan, F. Sultan, F. Riaz, M. Jamil, Investigation of combined heat and mass transfer between vertical parallel plates in a two-layer flow of couple stress nanofluid, Open Eng. 6 (2016).

DOI: 10.1515/eng-2016-0004

Google Scholar

[43] A.S. Eegunjobi, O.D. Makinde, Irreversibility analysis of hydromagnetic flow of couple stress fluid with radiative heat in a channel filled with a porous medium, Results Phys. 7 (2017) 459‑469.

DOI: 10.1016/J.RINP.2017.01.002

Google Scholar

[44] S. Adesanya, H. Ogunseye, J. Falade, R.S. Lebelo, S.O. Adesanya, H.A. Ogunseye, J.A. Falade, R.S. Lebelo, Thermodynamic Analysis for Buoyancy-Induced Couple Stress Nanofluid Flow with Constant Heat Flux, Entropy. 19 (2017) 580.

DOI: 10.3390/e19110580

Google Scholar

[45] E.P. Siva, A.G.S. Srinivas, M. Vidhya, Thermal radiation effect on mhd peristaltic transport of a couple stress nanofluid in a tapered asymmetric channel, Int. J. Pure Appl. Math. 113 (2017) 106‑114. https://acadpubl.eu/jsi/2017-113-pp/articles/13/12.pdf.

DOI: 10.17654/am096060307

Google Scholar

[46] R. Van der Borght, A numerical study of non-linear convection in a compressible medium, J. Comput. Appl. Math. 6 (1980) 283‑294.

DOI: 10.1016/0771-050x(80)90038-8

Google Scholar

[47] J.K. Kamel, S. Paolucci, Heat transfer and fluid flow in a furnace using the non-Boussinesq approximation, in: ASME 2004 Heat Transf. Eng. Summer Conf., American Society of Mechanical Engineers, 2004: p.933‑938.

DOI: 10.1115/ht-fed2004-56466

Google Scholar

[48] K. Vajravelu, K.S. Sastri, Fully developed laminar free convection flow between two parallel vertical walls—I, Int. J. Heat Mass Transf. 20 (1977) 655‑660.

DOI: 10.1016/0017-9310(77)90052-7

Google Scholar

[49] H. Barrow, T.L. Sitharamarao, Effect of variation in volumetric expansion coefficient on free convection heat transfer, Br. Chem. Eng. 16 (1971) 704‑+.

Google Scholar

[50] M.K. Partha, Nonlinear convection in a non-Darcy porous medium, Appl. Math. Mech. 31 (2010) 565‑574.

DOI: 10.1007/s10483-010-0504-6

Google Scholar

[51] S.O. Adesanya, H.A. Ogunseye, R.S. Lebelo, K.C. Moloi, O.G. Adeyemi, Second law analysis for nonlinear convective flow of a reactive couple stress fluid through a vertical channel., Heliyon. 4 (2018) e00907.

DOI: 10.1016/j.heliyon.2018.e00907

Google Scholar

[52] O.D. Makinde, A.S. Eegunjobi, MHD couple stress nanofluid flow in a permeable wall channel with entropy generation and nonlinear radiative heat, J. Therm. Sci. Technol. 12 (2017) JTST0033-JTST0033. doi:https://doi.org/10.1299/jtst.2017jtst0033.

DOI: 10.1299/jtst.2017jtst0033

Google Scholar

[53] S.O. Adesanya, J.A. Falade, R. Rach, Effect of couple stresses on hydromagnetic Eyring-Powell fluid flow through a porous channel, Theor. Appl. Mech. 42 (2015) 135‑150.

DOI: 10.2298/tam1502135a

Google Scholar

[54] P.K. Kameswaran, B. Vasu, P. Murthy, R.S.R. Gorla, Mixed convection from a wavy surface embedded in a thermally stratified nanofluid saturated porous medium with non-linear Boussinesq approximation, Int. Commun. Heat Mass Transf. 77 (2016) 78‑86.

DOI: 10.1016/j.icheatmasstransfer.2016.07.006

Google Scholar

[55] K. Ramesh, Effects of slip and convective conditions on the peristaltic flow of couple stress fluid in an asymmetric channel through porous medium, Comput. Methods Programs Biomed. 135 (2016) 1‑14.

DOI: 10.1016/j.cmpb.2016.07.001

Google Scholar

[56] T. Hayat, R. Sajjad, A. Alsaedi, T. Muhammad, R. Ellahi, On squeezed flow of couple stress nanofluid between two parallel plates, Results Phys. 7 (2017) 553‑561.

DOI: 10.1016/J.RINP.2016.12.038

Google Scholar

[57] J. Umavathi, J.P. Kumar, I. Pop, M. Shekar, Flow and heat transfer of couple stress fluid in a vertical channel in the presence of heat source/sink, Int. J. Numer. Methods Heat Fluid Flow. 27 (2017) 795‑819.

DOI: 10.1108/HFF-12-2015-0540

Google Scholar