[1]
J. Fourier, Theorie analytique de la chaleur, par M. Fourier, Chez Firmin Didot, père et fils, 1822.
Google Scholar
[2]
A. Fick, Ueber diffusion, Ann. Phys. 170 (1855) 59‑86.
Google Scholar
[3]
H. Darcy, Les fontaines publiques de la ville de Dijon: exposition et application..., Victor Dalmont, 1856.
Google Scholar
[4]
J.R. Philip, D.A. De Vries, Moisture movement in porous materials under temperature gradients, Trans. Am. Geophys. Union. 38 (1957) 222.
DOI: 10.1029/TR038i002p00222
Google Scholar
[5]
O.A. Saunders, Natural Convection in Liquids, Proc. R. Soc. A Math. Phys. Eng. Sci. 172 (1939) 55‑71.
DOI: 10.1098/rspa.1939.0089
Google Scholar
[6]
W. Elenbaas, Heat dissipation of parallel plates by free convection, Physica. 9 (1942) 1‑28.
DOI: 10.1016/s0031-8914(42)90053-3
Google Scholar
[7]
H. Sithole, H. Mondal, S. Goqo, P. Sibanda, S. Motsa, Numerical simulation of couple stress nanofluid flow in magneto-porous medium with thermal radiation and a chemical reaction, Appl. Math. Comput. 339 (2018) 820‑836.
DOI: 10.1016/j.amc.2018.07.042
Google Scholar
[8]
C.O. Bennett, J.E. Myers, Momentum, heat, and mass transfer, McGraw-Hill, (1962).
Google Scholar
[9]
A. Bejan, K.R. Khair, Heat and mass transfer by natural convection in a porous medium, Int. J. Heat Mass Transf. 28 (1985) 909‑918.
DOI: 10.1016/0017-9310(85)90272-8
Google Scholar
[10]
R.G. Carbonell, S. Whitaker, Heat and mass transfer in porous media, in: Fundam. Transp. Phenom. porous media, Springer, 1984: p.121‑198.
DOI: 10.1007/978-94-009-6175-3_3
Google Scholar
[11]
T.L. Bergman, F.P. Incropera, D.P. DeWitt, A.S. Lavine, Fundamentals of heat and mass transfer, John Wiley & Sons, (2011).
Google Scholar
[12]
S.~Chandrasekhar, Hydrodynamic and hydromagnetic stability, (1961).
Google Scholar
[13]
T.G. Cowling, Magnetohydrodynamics Interscience Publishers^ Inc, New York. (1957).
Google Scholar
[14]
M.F. El-Amin, Magnetohydrodynamic free convection and mass transfer flow in micropolar fluid with constant suction, J. Magn. Magn. Mater. 234 (2001) 567‑574.
DOI: 10.1016/S0304-8853(01)00374-2
Google Scholar
[15]
K. Vajravelu, Combined free and forced convection in hydromagnetic flows, in vertical wavy channels, with travelling thermal waves, Int. J. Eng. Sci. 27 (1989) 289‑300.
DOI: 10.1016/0020-7225(89)90117-1
Google Scholar
[16]
M.A. Seddeek, Heat and mass transfer on a stretching sheet with a magnetic field in a visco-elastic fluid flow through a porous medium with heat source or sink, Comput. Mater. Sci. 38 (2007) 781‑787.
DOI: 10.1016/J.COMMATSCI.2006.05.015
Google Scholar
[17]
M.F. El-Amin, Magnetohydrodynamic free convection and mass transfer flow in micropolar fluid with constant suction, J. Magn. Magn. Mater. 234 (2001) 567‑574.
DOI: 10.1016/S0304-8853(01)00374-2
Google Scholar
[18]
O.A. Bég, A.Y. Bakier, V.R. Prasad, Numerical study of free convection magnetohydrodynamic heat and mass transfer from a stretching surface to a saturated porous medium with Soret and Dufour effects, Comput. Mater. Sci. 46 (2009) 57‑65.
DOI: 10.1016/j.commatsci.2009.02.004
Google Scholar
[19]
A. Raptis, C. Massalas, G. Tzivanidis, Hydromagnetic free convection flow through a porous medium between two parallel plates, Phys. Lett. A. 90 (1982) 288‑289.
DOI: 10.1016/0375-9601(82)90118-9
Google Scholar
[20]
G.K. Singha, P.N. Deka, Skin-friction for unsteady free convection MHD flow between two heated vertical parallel plates, Theor. Appl. Mech. 33 (2006) 259‑280.
DOI: 10.2298/tam0604259s
Google Scholar
[21]
A.K. Singh, MHD free convective flow through a porous medium between two vertical parallel plates, (2002).
Google Scholar
[22]
V.K. Stokes, Couple Stresses in Fluids, Phys. Fluids. 9 (1966) 1709.
DOI: 10.1063/1.1761925
Google Scholar
[23]
D. M., S. D., S. B., Analytical solutions of couple stress fluid flows with slip boundary conditions, Alexandria Eng. J. 53 (2014) 723‑730.
DOI: 10.1016/J.AEJ.2014.06.005
Google Scholar
[24]
S. Akhtar, N.A. Shah, Exact solutions for some unsteady flows of a couple stress fluid between parallel plates, Ain Shams Eng. J. (2016).
DOI: 10.1016/J.ASEJ.2016.05.008
Google Scholar
[25]
V.M. Soundalgekar, Effects of Couple Stresses in Fluids on Dispersion of a Solute in a Channel Flow, Phys. Fluids. 14 (1971) 19.
DOI: 10.1063/1.1693276
Google Scholar
[26]
J.C. Umavathi, M.S. Malashetty, Oberbeck convection flow of a couple stress fluid through a vertical porous stratum, Int. J. Non. Linear. Mech. 34 (1999) 1037‑1045.
DOI: 10.1016/S0020-7462(98)00074-2
Google Scholar
[27]
R.C. Sharma, K.D. Thakur, On couple-stress fluid heated from below in porous medium in hydromagnetics, Czechoslov. J. Phys. 50 (2000) 753‑758.
DOI: 10.1023/A:1022886903213
Google Scholar
[28]
J.-R. Lin, Effects of couple stresses on the lubrication of finite journal bearings, Wear. 206 (1997) 171‑178.
DOI: 10.1016/s0043-1648(96)07357-7
Google Scholar
[29]
U.M. Mokhiamer, W.A. Crosby, H.A. El-Gamal, A study of a journal bearing lubricated by fluids with couple stress considering the elasticity of the liner, Wear. 224 (1999) 194‑201.
DOI: 10.1016/s0043-1648(98)00320-2
Google Scholar
[30]
D. Srinivasacharya, K. Kaladhar, Soret and dufour effects on free convection flow of a couple stress fluid in a vertical channel with chemical reaction, Chem. Ind. Chem. Eng. Q. 19 (2013) 45‑55.
DOI: 10.2298/CICEQ111231041S
Google Scholar
[31]
S.O. Adesanya, C.R. Makhalemele, L. Rundora, Natural convection flow of heat generating hydromagnetic couple stress fluid with time periodic boundary conditions, Alexandria Eng. J. (2017).
DOI: 10.1016/J.AEJ.2017.04.006
Google Scholar
[32]
M. Devakar, A. Raje, S. Hande, Unsteady Flow of Couple Stress Fluid Sandwiched Between Newtonian Fluids Through a Channel, Zeitschrift für Naturforsch. A. 73 (2018) 629‑637.
DOI: 10.1515/zna-2017-0434
Google Scholar
[33]
T. Hayat, S. Asghar, A. Tanveer, A. Alsaedi, Chemical reaction in peristaltic motion of MHD couple stress fluid in channel with Soret and Dufour effects, Results Phys. 10 (2018) 69‑80.
DOI: 10.1016/j.rinp.2018.04.040
Google Scholar
[34]
N.T. Eldabe, S.M. Elshaboury, A.A. Hasan, M.A. Elogail, MHD Peristaltic Flow of a Couple Stress Fluids with Heat and Mass Transfer through a Porous Medium, Innov. Syst. Des. Eng. 3 (2012) 51‑67. https://www.iiste.org/Journals/index.php/ISDE/article/view/1841 (Consulted on October 21st, 2018).
DOI: 10.1016/j.apm.2015.04.043
Google Scholar
[35]
D. Srinivasacharya, K. Kaladhar, Natural convection flow of a couple stress fluid between two vertical parallel plates with Hall and ion-slip effects, Acta Mech. Sin. 28 (2012) 41‑50.
DOI: 10.1007/s10409-011-0523-z
Google Scholar
[36]
N.T. Eldabe, S.M. Elshaboury, A.A. Hasan, M.A. Elogail, MHD peristaltic flow of a couple stress fluids with heat and mass transfer through a porous medium, Innov. Syst. Des. Eng. 3 (2012).
DOI: 10.1016/j.apm.2015.04.043
Google Scholar
[37]
R. Muthuraj, S. Srinivas, R.K. Selvi, Heat and mass transfer effects on MHD flow of a couple-stress fluid in a horizontal wavy channel with viscous dissipation and porous medium, Heat Transf. Res. 42 (2013) 403‑421.
DOI: 10.1002/htj.21040
Google Scholar
[38]
H.P. Rani, G.J. Reddy, C.N. Kim, The effect of the couple stress parameter and Prandtl number on the transient natural convection flow over a vertical cylinder, Acta Mech. Sin. 29 (2013) 649‑656.
DOI: 10.1007/s10409-013-0079-1
Google Scholar
[39]
K. Kaladhar, Natural Convection Flow of Couple Stress Fluid in a Vertical Channel With Hall and Joule Heating Effects, Procedia Eng. 127 (2015) 1071‑1078.
DOI: 10.1016/J.PROENG.2015.11.465
Google Scholar
[40]
S.U.S. Choi, J.A. Eastman, Enhancing thermal conductivity of fluids with nanoparticles, in: United States, 1995. https://www.osti.gov/servlets/purl/196525.
Google Scholar
[41]
J. Buongiorno, Convective transport in nanofluids, J. Heat Transfer. 128 (2006) 240‑250. doi:.
DOI: 10.1115/1.2150834
Google Scholar
[42]
N.A. Khan, F. Sultan, F. Riaz, M. Jamil, Investigation of combined heat and mass transfer between vertical parallel plates in a two-layer flow of couple stress nanofluid, Open Eng. 6 (2016).
DOI: 10.1515/eng-2016-0004
Google Scholar
[43]
A.S. Eegunjobi, O.D. Makinde, Irreversibility analysis of hydromagnetic flow of couple stress fluid with radiative heat in a channel filled with a porous medium, Results Phys. 7 (2017) 459‑469.
DOI: 10.1016/J.RINP.2017.01.002
Google Scholar
[44]
S. Adesanya, H. Ogunseye, J. Falade, R.S. Lebelo, S.O. Adesanya, H.A. Ogunseye, J.A. Falade, R.S. Lebelo, Thermodynamic Analysis for Buoyancy-Induced Couple Stress Nanofluid Flow with Constant Heat Flux, Entropy. 19 (2017) 580.
DOI: 10.3390/e19110580
Google Scholar
[45]
E.P. Siva, A.G.S. Srinivas, M. Vidhya, Thermal radiation effect on mhd peristaltic transport of a couple stress nanofluid in a tapered asymmetric channel, Int. J. Pure Appl. Math. 113 (2017) 106‑114. https://acadpubl.eu/jsi/2017-113-pp/articles/13/12.pdf.
DOI: 10.17654/am096060307
Google Scholar
[46]
R. Van der Borght, A numerical study of non-linear convection in a compressible medium, J. Comput. Appl. Math. 6 (1980) 283‑294.
DOI: 10.1016/0771-050x(80)90038-8
Google Scholar
[47]
J.K. Kamel, S. Paolucci, Heat transfer and fluid flow in a furnace using the non-Boussinesq approximation, in: ASME 2004 Heat Transf. Eng. Summer Conf., American Society of Mechanical Engineers, 2004: p.933‑938.
DOI: 10.1115/ht-fed2004-56466
Google Scholar
[48]
K. Vajravelu, K.S. Sastri, Fully developed laminar free convection flow between two parallel vertical walls—I, Int. J. Heat Mass Transf. 20 (1977) 655‑660.
DOI: 10.1016/0017-9310(77)90052-7
Google Scholar
[49]
H. Barrow, T.L. Sitharamarao, Effect of variation in volumetric expansion coefficient on free convection heat transfer, Br. Chem. Eng. 16 (1971) 704‑+.
Google Scholar
[50]
M.K. Partha, Nonlinear convection in a non-Darcy porous medium, Appl. Math. Mech. 31 (2010) 565‑574.
DOI: 10.1007/s10483-010-0504-6
Google Scholar
[51]
S.O. Adesanya, H.A. Ogunseye, R.S. Lebelo, K.C. Moloi, O.G. Adeyemi, Second law analysis for nonlinear convective flow of a reactive couple stress fluid through a vertical channel., Heliyon. 4 (2018) e00907.
DOI: 10.1016/j.heliyon.2018.e00907
Google Scholar
[52]
O.D. Makinde, A.S. Eegunjobi, MHD couple stress nanofluid flow in a permeable wall channel with entropy generation and nonlinear radiative heat, J. Therm. Sci. Technol. 12 (2017) JTST0033-JTST0033. doi:https://doi.org/10.1299/jtst.2017jtst0033.
DOI: 10.1299/jtst.2017jtst0033
Google Scholar
[53]
S.O. Adesanya, J.A. Falade, R. Rach, Effect of couple stresses on hydromagnetic Eyring-Powell fluid flow through a porous channel, Theor. Appl. Mech. 42 (2015) 135‑150.
DOI: 10.2298/tam1502135a
Google Scholar
[54]
P.K. Kameswaran, B. Vasu, P. Murthy, R.S.R. Gorla, Mixed convection from a wavy surface embedded in a thermally stratified nanofluid saturated porous medium with non-linear Boussinesq approximation, Int. Commun. Heat Mass Transf. 77 (2016) 78‑86.
DOI: 10.1016/j.icheatmasstransfer.2016.07.006
Google Scholar
[55]
K. Ramesh, Effects of slip and convective conditions on the peristaltic flow of couple stress fluid in an asymmetric channel through porous medium, Comput. Methods Programs Biomed. 135 (2016) 1‑14.
DOI: 10.1016/j.cmpb.2016.07.001
Google Scholar
[56]
T. Hayat, R. Sajjad, A. Alsaedi, T. Muhammad, R. Ellahi, On squeezed flow of couple stress nanofluid between two parallel plates, Results Phys. 7 (2017) 553‑561.
DOI: 10.1016/J.RINP.2016.12.038
Google Scholar
[57]
J. Umavathi, J.P. Kumar, I. Pop, M. Shekar, Flow and heat transfer of couple stress fluid in a vertical channel in the presence of heat source/sink, Int. J. Numer. Methods Heat Fluid Flow. 27 (2017) 795‑819.
DOI: 10.1108/HFF-12-2015-0540
Google Scholar