[1]
A.S. Butt, S. Munawar, A. Ali, A. Mehmood, Effect of viscoelasticity on entropy generation in a porous medium over a stretching plate, World Appl. Sci. J., 17(4), (2012), 516-523.
Google Scholar
[2]
S. Mukhopadhyay, P. Ranjan De, and G. C. Layek, Heat transfer characteristics for the Maxwell fluid flow past an unsteady stretching permeable surface embedded in a porous medium with thermal radiation, Journal of Applied Mechanics and Technical Physics, 54(3), (2013), 385–396.
DOI: 10.1134/s0021894413030061
Google Scholar
[3]
D. Pal and H. Mondal, Hydromagnetic convective diffusion of species in Darcy-Forchheimer porous medium with nonuniform heat source/sink and variable viscosity, International Communication in Heat and Mass Transfer, 39, (2012), 913–917.
DOI: 10.1016/j.icheatmasstransfer.2012.05.012
Google Scholar
[4]
B. J. Gireeha, B. Mahanthesh, P. T. Manjunatha, R.S.R. Gorla, Numerical solution for hydromagnetic boundary layer flow and heat transfer past a stretching surface embedded in non-Darcy porous medium with fluid-particle suspension, Journal of Nigerian Mathematical society, 34, (2015), 267-285.
DOI: 10.1016/j.jnnms.2015.07.003
Google Scholar
[5]
N. V. Ganesh, A. K. A. Hakeem, and B. Ganga, Darcy-Forchheimer flow of hydromagnetic nanofluid over a stretching/shrinking sheet in a thermally stratified porous medium with second order slip, viscous and Ohmic dissipations effects, Ain Shams Engineering Journal, 201, (2016), DOI: http://dx.doi.org/10.1016/j.asej.20104.019.
DOI: 10.1016/j.asej.2016.04.019
Google Scholar
[6]
T. Hayat, T. Muhammad, S. Al-Mezal, and S. J. Liao, "Darcy-Forchheimer flow with variable thermal conductivity and Cattaneo-Christov heat flux, International Journal of Numerical Methods for Heat and Fluid Flow, 26, (2016), 2355–2369.
DOI: 10.1108/hff-08-2015-0333
Google Scholar
[7]
T. Muhammad, A. Alsaedi, S. A. Shahzad, and T. Hayat, A revised model for Darcy-Forchheimer flow of Maxwell nanofluid subject to convective boundary condition, Chinese Journal of Physics, 55, (2017), 963–976.
DOI: 10.1016/j.cjph.2017.03.006
Google Scholar
[8]
Ch. RamReddy, P. Naveen, D. Srinivasacharya, Nonlinear convective flow of Non Newtonian fluid over an inclined plate with convective surface condition: A Darcy Forchheimer Model. Int. J. Appl. Comput. Math, 4,(2018)51,https://doi.org/10.1007/s40819-018-0484-z.
DOI: 10.1007/s40819-018-0484-z
Google Scholar
[9]
T. Sajid, M. Sagheer, S. Hussain, and M. Bilal Darcy-Forchheimer flow of Maxwell nanofluid flow with nonlinear thermal radiation and activation energy AIP Advances, 8, 035102 (2018);.
DOI: 10.1063/1.5019218
Google Scholar
[10]
K. Sadeghy, H. Hajibeygi, and S. M. Taghavi, Stagnation Point Flow of Upper-Convected Maxwell Fluids, Int. J. Non-Linear Mech. 41, (2006), 1242–1247.
DOI: 10.1016/j.ijnonlinmec.2006.08.005
Google Scholar
[11]
R. C. Bataller, Magnetohydrodynamic Flow and Heat Transfer of an Upper-Convected Maxwell Fluid Due to a Stretching Sheet, FDMP, 7(2), (2011) 153-173.
Google Scholar
[12]
K. Bhattacharyya, T. Hayat, Rama S. R. Gorla, Heat transfer in the boundary layer flow of Maxwell fluid over a permeable shrinking sheet. Thermal Energy and Power Engineering, 2(3), (2013), 72-78.
DOI: 10.2478/ijame-2013-0062
Google Scholar
[13]
N.F.M. Noor, Analysis for MHD flow of a Maxwell fluid past a vertical stretching sheet in the presence of thermophoresis and chemical reaction, World Academy of Science, Engineering and Technology, 6(4), (2012), 485 - 489.
Google Scholar
[14]
M. S. Abel, J. V. Tawade, and M. M. Nandeppanavar, "MHD Flow and Heat Transfer for the Upper-Convected Maxwell Fluid over a Stretching Sheet, Meccanica, 47, (2012), 385–393.
DOI: 10.1007/s11012-011-9448-7
Google Scholar
[15]
S. Mukhopadhyay, Heat transfer analysis of unsteady flow of a Maxwell fluid over a stretching surface in the presence of heat source/sink, CHIN.PHYS. LETT, 29(5), (2012), 055703.
DOI: 10.1088/0256-307x/29/5/054703
Google Scholar
[16]
G. K. Ramesh, B. J. Gireesha, Influence of heat source/sink on a Maxwell fluid over a stretching surface with convective boundary condition in the presence of nano particles, Ain Shams Engineering Journal, http://dx.doi.org/10.1016/j.asej.2014.04.003.
DOI: 10.1016/j.asej.2014.04.003
Google Scholar
[17]
J. H. Zhao, L. C. Zheng, X. X. Zhang, F. W. Liu, Unsteady boundary layer natural convection heat transfer of Maxwell viscous fluid over a vertical plate, Int J. Heat Mass Transf, 97, (2016), 760-766.
DOI: 10.1016/j.ijheatmasstransfer.2016.02.059
Google Scholar
[18]
M. S. Alam, M. M. Rahman, M. A. Sattar, MHD free convective heat and mass transfer flow past an inclined surface with heat generation, Thammasat Int. J. Sci. Technol., 11 (2006), 1 – 8.
Google Scholar
[19]
M. S. Alam, M. M. Rahman, M. A. Sattar, Effects of chemical reaction and thermophoresis on magneto-hydrodynamic mixed convective heat and mass transfer flow along an inclined plate in the presence of heat generation and (or) absorption with viscous dissipation and Joule heating, Can. J. Phys., 86, (2008), 1057–1066.
DOI: 10.1139/p08-037
Google Scholar
[20]
M. M. Rahman, M. J. Uddin, A. Aziz, Effects of variable electric conductivity and non-uniform heat source (or sink) on convective micropolar fluid flow along an inclined flat plate with surface heat flux. International Journal of Thermal Sciences, 48, (2009), 2331–2340.
DOI: 10.1016/j.ijthermalsci.2009.05.003
Google Scholar
[21]
E. M. Abd-eldohad, A. F. Ghonaim, Radiation effect on heat transfer of a Micropolar fluid through a porous medium, International Journal of Physical Science, 169, (2005), 500-516.
DOI: 10.1016/j.amc.2004.09.059
Google Scholar
[22]
T. Hayat, M. Qasim, Influence of thermal radiation and Joule heating on MHD flow of a Maxwell fluid in the presence of thermophoresis, International Journal of Heat and Mass Transfer, 53 (2010), 4780–4788.
DOI: 10.1016/j.ijheatmasstransfer.2010.06.014
Google Scholar
[23]
T. Hayat, S. Qayyum, S. A. Shehzad and A. Alsaedi, Simultaneous effects of heat generation/absorption and thermal radiation in magnetohydrodynamics (MHD) flow of Maxwell nanofluid towards a stretched surface, Results Phys, 7, (2017), 562-573.
DOI: 10.1016/j.rinp.2016.12.009
Google Scholar
[24]
T. Fareesa, G. Taza, I. S. Khan, A. Khan, L. Ali, Muradullah, Flow of a nano-liqiud film of Maxwell fluid with thermal radiation and magnetohydrodynamic properties on an unstable stretching sheet, Journal of nanofluids, 6(6), (2017), 1021-1030.
DOI: 10.1166/jon.2017.1400
Google Scholar
[25]
M. Mustafa, A. Mushtaq, T. Hayat, B. Ahmad, Nonlinear radiation heat transfer Effect in the natural convective boundary layer flow of nanofluid past a vertical plate: A numerical study, PLOSONE, 9(9), (2014) e103946.
DOI: 10.1371/journal.pone.0103946
Google Scholar
[26]
M. J. Uddin, O. A. Beg, A. I. Ismail, Radiative convective nanofluid past a starching/shrinking sheet with slip Effect, Journal of thermophysics and heat transfer, (2015).
DOI: 10.2514/1.t4372
Google Scholar
[27]
D. Pal, P. Saha, K. Vajravelu, Combined Effect of non-linear thermal radiation and internal heat generation/absorption on heat and mass transfer in a thin liquid film on a permeable unsteady stretching surface with convective boundary condition, Int. J. Appl. Comput. Math, (2016), DOI 10.1007/s40819-016-0242-z.
DOI: 10.1007/s40819-016-0242-z
Google Scholar
[28]
B. J. Gireesha, B. Mahanthesh, R. S. R. Gorla, K. Lakshmi, Mixed convection two-phase flow of Maxwell fluid under the influence of non-linear thermal radiation, non-uniform heat source/sink and fluid particle suspension, Ain Shams Engineering Journal, http://dx.doi.org/10.1016/j.asej.2016.04.020.
DOI: 10.1016/j.asej.2016.04.020
Google Scholar
[29]
C. L. M. H. Navier, Memoire sur les lois du mouvement des fluides. Mem. Acad. R. Sci. Paris,6, (1823), 389 – 416.
Google Scholar
[30]
A. Haritha, Y. Devasena and B. Vishali, MHD Heat and Mass Transfer of the Unsteady Flow of a Maxwell Fluid over a Stretching Surface with Navier Slip and Convective Boundary Conditions. Global Journal of Pure and Applied Mathematics,13(6),(2017), 2169-2179.
DOI: 10.11648/j.acm.20140305.19
Google Scholar
[31]
K. Kaladhar and E. Komuraiah, Homotopy analysis for the influence of Navier slip flow in a vertical channel with cross diffusion effects. Math Sci., 11 (2017), 219–229.
DOI: 10.1007/s40096-017-0225-1
Google Scholar
[32]
A. Bejan, Entropy Generation Minimization: The Method of Thermodynamic Optimization of Finite-Size Systems and Finite-Time Processes; CRC Press: Boca Raton, FL, USA, (1995).
DOI: 10.1201/9781482239171
Google Scholar
[33]
H. F. Oztop, K. A. Al-Salem, A review on entropy generation in natural and mixed convection heat transfer for energy systems, Renew. Sust. Energy Rev., 16, (2012), 911–920.
DOI: 10.1016/j.rser.2011.09.012
Google Scholar
[34]
A. S. Butt, S. Munawar, and A. Ali, Effect of viscoelasticity on entropy generation in a porous medium over a stretching plate, World Appl Sci J, 17(4), (2012), 516-523.
Google Scholar
[35]
A. S. Butt, A. Ali, Effects of magnetic field on entropy generation in flow and heat transfer due to radially stretching surface. Chin. Phys. Lett., 30(2), (2012), 02704-02708.
DOI: 10.1088/0256-307x/30/2/024701
Google Scholar
[36]
S. Shateyi, S. S. Motsa and Z. Makukula, On Spectral Relaxation Method for Entropy Generation on a MHD Flow and Heat Transfer of a Maxwell Fluid, Journal of Applied Fluid Mechanics, 8(1), (2015), 21-31.
DOI: 10.36884/jafm.8.01.20273
Google Scholar
[37]
M. H. Abolbashari, N. Freidoonimehr, F. Nazari, M. M. Rashidi, Analytical modeling of entropy generation for Casson nano-fluid flow induced by a stretching surface. Adv. Powder Technol. 26, (2015), 542–552.
DOI: 10.1016/j.apt.2015.01.003
Google Scholar
[38]
A. S. Butt, A. Ali, A. Mehmood, Irreversibility analysis of magneto hydrodynamic flow over a stretching sheet with partial slip and convective boundary. International Journal of Physical Sciences, 2(4), (2014), 046-060.
Google Scholar
[39]
J. Qing, M. M. Bhatti, M. A. Abbas, M. M. Rashidi, M. E. Ali, Entropy Generation on MHD Casson Nanofluid Flow over a Porous Stretching/Shrinking Surface. Entropy. 18, (2016), 123;.
DOI: 10.3390/e18040123
Google Scholar
[40]
T. Hayat, M. Ijas Khan, S. Qayyum, A. Alsaedi, M. Imran Khan, New thermodynamics of entropy generation minimization with nonlinear thermal radiation and nanomaterials. Physics Letters A. (2018) https://doi.org/10.1016/j.physleta.2018.01.024.
DOI: 10.1016/j.physleta.2018.01.024
Google Scholar
[41]
S. Liao, Beyond perturbation. Introduction to homotopy analysis method. Chapman and Hall/CRC Press, Boca Raton (2003).
Google Scholar
[42]
O. Abdulaziz, N. F. M. Noor and I. Hashim, Homotopy analysis method for fully developed MHD micropolar fluid flow between vertical porous plates. International Journal for Numerical Methods in Engineering. 78, (2009), 817–827.
DOI: 10.1002/nme.2509
Google Scholar
[43]
U. Farooq, Y. L. Zhao, T. Hayat, A. Alsaedi and S. J. Liao, Application of the HAM based mathematica package BVPh 2.0 on MHD Falkner-Skan flow of nanofluid, Comp., Fluid. 111, (2015), 69-75.
DOI: 10.1016/j.compfluid.2015.01.005
Google Scholar
[44]
R. Ellahi, E. Shivanian, S. Abbasbandy, T. Hayat, Numerical study of magnetohydrodynamics generalized Couette flow of Eyring–Powell fluid with heat transfer and slip condition. Int. J. Numer. Methods Heat Fluid Flow, 26(5), (2016), 1433–1445.
DOI: 10.1108/hff-04-2015-0131
Google Scholar