Non-Linear Model for a Spiral Porous Fin Subjected to Darcy Flow

Article Preview

Abstract:

In this study, the temperature distribution equation for a spiral porous fin is presented. Based on Darcy’s model, a mathematical equation of the energy is derived and a suitable dimensionless form is outlined to highlight some characteristic parameters, namely, the spiral fin pitch, the porosity, and the modified Rayleigh number. The behavior of the solution is analyzed for two cases of interest, taking into account the temperature-dependent thermal conductivity of the fin encountered in a hostile environment. A Numerical method is applied to solve this non-linear problem. It is found that the thermal transfer is not affected by the change of the spiral fin pitch, whereas increasing the porosity or the parameter β* makes higher fin temperature and improve the fin efficiency.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

84-92

Citation:

Online since:

August 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.H. Sharqawy, S.M Zubair, Efficiency and optimization of straight fins with combined heat and mass transfer –an analytical solution, Appl. Therm. Eng., 28, (2008) 2279-2288.

DOI: 10.1016/j.applthermaleng.2008.01.003

Google Scholar

[2] S. Sabaghi, A. Rezaii, Gh.R Shahri, M.S Baktash, Mathematical analysis for the efficiency of a semi-spherical fin with a simultaneous heat and mass transfer". Int. J. Refrig, 34, (2011) 1877-1882.

DOI: 10.1016/j.ijrefrig.2011.06.014

Google Scholar

[3] A. Aziz, M.N Bouaziz, A least squares method for a longitudinal fin with temperature dependent internal heat generation and thermal conductivity, Energ. Conver. Manag., 52, (2011) 2876-2882.

DOI: 10.1016/j.enconman.2011.04.003

Google Scholar

[4] M.N Bouaziz, S. Hanini, Efficiency and optimisation of fin with temperature-dependent thermal conductivity: a simplified solution, Heat and Mass Transfer, 44 (1), (2007) 1-9.

DOI: 10.1007/s00231-006-0225-4

Google Scholar

[5] D.D Ganji, Z.Z Ganji, H.D Ganji, Determination of temperature distribution for annual fins with temperature-dependent thermal conductivity by HPM, Therm. Sci., 15, (2011) 111-115.

DOI: 10.2298/tsci11s1111g

Google Scholar

[6] S. Kiwan, Effect of radiative losses on the heat transfer from porous fins, Int. J.Therm. Sci. , 46, (2007) 1046-1055.

DOI: 10.1016/j.ijthermalsci.2006.11.013

Google Scholar

[7] S. Kiwan, O. Zeitoun, Natural convection in a horizontal cylindrical annulus using porous fins, Int. J. Numer. Heat Fluid Flow, 18, (2008) 618-634.

DOI: 10.1108/09615530810879747

Google Scholar

[8] S. Kiwan, M. Al-Nimr, Using porous fins for heat transfer enhancement, Journal of Heat Transfer, 123 (4), (2001) 790-795.

DOI: 10.1115/1.1371922

Google Scholar

[9] S. Saedodin, S. Sadeghi, S., Temperature distribution in long porous fins in natural convection condition, Middle-east J. Sci. Res., 13 (6), (2013) 812-817.

Google Scholar

[10] M. Hatami, A. Hasanpour, D.D Ganji, Heat transfer study through porous fins (Si3N4 and Al) with temperature dependent heat generation, Energ. Convers. Manag., 74, (2013) 9-16.

DOI: 10.1016/j.enconman.2013.04.034

Google Scholar

[11] M. Hatami, D.D Ganji, DD., Investigation of refrigeration efficiency for fully wet circular porous fins with variable sections by combined heat and mass transfer analysis, Int. J. Refrig., 40, (2014) 140-151.

DOI: 10.1016/j.ijrefrig.2013.11.002

Google Scholar

[12] M. Hatami, Gh.R Mehdizadeh Ahangar, D.D Ganji, K. Boubaker, Refrigeration efficiency analysis for fully wet semi-spherical porous fins, Energ. Conver. Manag., 84, (2014) 533-540.

DOI: 10.1016/j.enconman.2014.05.007

Google Scholar

[13] D. Bhanja, B. Kundu, B., Thermal analysis of a constructal T-shaped porous fin with radiation effects, International Journal of refrigeration, 34(6), (2011) 1483-1496.

DOI: 10.1016/j.ijrefrig.2011.04.003

Google Scholar

[14] B. Kundu, B., Bhanja, An analytical prediction for performance and optimum design analysis of porous fins, Int. J. Refrigeration, 34, (2011) 337-352.

DOI: 10.1016/j.ijrefrig.2010.06.011

Google Scholar

[15] A. Moradi, T. Hayat, A. Alsaedi, Convection-radiation thermal analysis of triangular porous fins with temperature-dependent thermal conductivity by DTM, Energ. conver. Manag, 77, (2014) 70-77.

DOI: 10.1016/j.enconman.2013.09.016

Google Scholar

[16] R. Das, R., Forward and inverse solution of a conductive-convective and radiative cylindrical porous fin, Energ. Conver. Manag. , 87, (2014) 96-106.

DOI: 10.1016/j.enconman.2014.06.096

Google Scholar

[17] W. Wen-Jyi, C. Cha'o-Kuang, Transient response of a spiral fin with its base subjected to a sinusoidal form in temperature, Computers & Structures, 34(1), (1990) 161-169.

DOI: 10.1016/0045-7949(90)90310-x

Google Scholar

[18] P. Kiatpachai, S. Pikulkajorn, S. Wongwises, Airside performance of serrated welded spiral fin-and-tube heat exchangers, International Journal of Heat and Mass Transfer, 89, (2015) 724-732.

DOI: 10.1016/j.ijheatmasstransfer.2015.04.095

Google Scholar

[19] H. Fajiang, C. Weiwu, Y. Ping, Experimental Investigation of Heat Transfer and Flowing Resistance for Air Flow Cross over Spiral Finned Tube Heat Exchanger, Energy Procedia, 17, (2012) 741-749.

DOI: 10.1016/j.egypro.2012.02.166

Google Scholar

[20] A.S. Nehad, I.L. Animasaun, R.O. Ibraheem, H.A. Babatunde, N. Sandeep, I. Pop, Scrutinization of the effects of Grashof number on the flow of different fluids driven by convection over various surfaces, Journal of Molecular Liquids, 249 (2018), 980-990.

DOI: 10.1016/j.molliq.2017.11.042

Google Scholar