Controllable Modification and Synthesis of Intelligent Nanomaterials: A Brief Review

Article Preview

Abstract:

Stimulus-response nanomaterials holds great potential in applications such as drug delivery, disease diagnosis and treatment, and tissue engineering. These nanomaterials can be intelligently controlled via dissolution or transformation upon exposure to stimuli such as enzymes, temperature, light, humidity, pH, etc. In this review, we summarize different stimulus-response groups, building units of smart nanomaterials, synthesis methods, and application prospects of intelligent nanomaterials. Our aim is to arouse broader research interest in smart nanomaterials in the biomedical field to develop more intelligent and controllable nanomaterials and realize precise nanomedicine.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

53-60

Citation:

Online since:

February 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] DF.Williams, On the nature of biomaterials, Biomaterials, 30, (2009), 5897-5909.

Google Scholar

[2] Q. Zhou, S. Shao, J. Wang, C. Xu, J. Xiang, Y. Piao, Z. Zhou, Q. Yu, J. Tang, X. Liu, Z. Gan, R. Mo, Z. Gu, Y. Shen, Enzyme-activatable polymer–drug conjugate augments tumour penetration and treatment efficacy, Nature Nanotechnology, 14, (2019), 799-809.

DOI: 10.1038/s41565-019-0485-z

Google Scholar

[3] C.E. Callmann, C.V. Barback, M.P. Thompson, D.J. Hall, R.F. Mattrey, N.C. Gianneschi, Therapeutic enzyme-responsive nanoparticles for targeted delivery and accumulation in tumors, Advanced Materials, 27 (2015) 4611-4615.

DOI: 10.1002/adma.201501803

Google Scholar

[4] T. Jiang, W. Sun, Q. Zhu, N.A. Burns, S.A. Khan, R. Mo, Z. Gu, Furin-mediated sequential delivery of anticancer cytokine and small-molecule drug shuttled by graphene, Advanced Materials, 27 (2015) 1021-1028.

DOI: 10.1002/adma.201404498

Google Scholar

[5] Y. Yuan, J. Zhang, X. Qi, S. Li, G. Liu, S. Siddhanta, I. Barman, X. Song, M.T. McMahon, J.W.M. Bulte, Furin-mediated intracellular self-assembly of olsalazine nanoparticles for enhanced magnetic resonance imaging and tumour therapy, Nature Materials, 18 (2019) 1376-1383.

DOI: 10.1038/s41563-019-0503-4

Google Scholar

[6] Q. Zhou, S. Shao, J. Wang, C. Xu, J. Xiang, Y. Piao, Z. Zhou, Q. Yu, J. Tang, X. Liu, Z. Gan, R. Mo, Z. Gu, Y. Shen, Enzyme-activatable polymer–drug conjugate augments tumour penetration and treatment efficacy, Nature Nanotechnology, 14 (2019) 799-809.

DOI: 10.1038/s41565-019-0485-z

Google Scholar

[7] A. López-Noriega, E. Ruiz-Hernández, E. Quinlan, G. Storm, W.E. Hennink, F.J. O'Brien, Thermally triggered release of a pro-osteogenic peptide from a functionalized collagen-based scaffold using thermosensitive liposomes, Journal of Controlled Release, 187 (2014) 158-166.

DOI: 10.1016/j.jconrel.2014.05.043

Google Scholar

[8] J. Shan, B. Tang, L. Liu, X. Sun, W. Shi, T.Yuan, J. Liang, Y. Fan, X. Zhang, Development of chitosan/glycerophosphate/collagen thermo-sensitive hydrogel for endoscopic treatment of mucosectomy-induced ulcer, Materials Science and Engineering, 103 (2019) 109870.

DOI: 10.1016/j.msec.2019.109870

Google Scholar

[9] H.S. Abandansari, M.H. Ghanian, F. Varzideh, E. Mahmoudi, S. Rajabi, P. Taheri, M.R. Nabid, H. Baharvand, In situ formation of interpenetrating polymer network using sequential thermal and click crosslinking for enhanced retention of transplanted cells, Biomaterials, 170 (2018) 12-25.

DOI: 10.1016/j.biomaterials.2018.04.007

Google Scholar

[10] Y. Sun, Q. Wang, J. Chen, L. Liu, L. Ding, M. Shen, J. Li, B. Han, Y. Duan, Temperature-sensitive gold nanoparticle-coated pluronic-PLL nanoparticles for drug delivery and chemo-photothermal therapy, Theranostics, 7 (2017) 4424-4444.

DOI: 10.7150/thno.18832

Google Scholar

[11] Z. Li, H. Shim, M.O. Cho, I.S. Cho, J.H. Lee, S.-W. Kang, B. Kwon, K.M. Huh, Thermo-sensitive injectable glycol chitosan-based hydrogel for treatment of degenerative disc disease, Carbohydrate Polymers, 184 (2018) 342-353.

DOI: 10.1016/j.carbpol.2018.01.006

Google Scholar

[12] Z. Xie, T. Fan, J. An, W. Choi, Y. Duo, Y. Ge, B. Zhang, G. Nie, N. Xie, T. Zheng, Y. Chen, H. Zhang, J.S. Kim, Emerging combination strategies with phototherapy in cancer nanomedicine, Chemical Society Reviews, 49 (2020) 8065-8087.

DOI: 10.1039/d0cs00215a

Google Scholar

[13] P. Cheng, J. Zhang, J. Huang, Q. Miao, C. Xu, K. Pu, Near-infrared fluorescence probes to detect reactive oxygen species for keloid diagnosis, Chemical science, 9 (2018) 6340-6347.

DOI: 10.1039/c8sc01865k

Google Scholar

[14] Q. Miao, D. Yeo, C.Wiraja, J. Zhang, X. Ning, C. Xu, K. Pu, Near-infrared fluorescent molecular probe for sensitive imaging of Keloid, Angewandte Chemie, 57 (2018) 1256-1260.

DOI: 10.1002/anie.201710727

Google Scholar

[15] X. Tian, T. Fan, W. Zhao, G. Abbas, B. Han, K. Zhang, N. Li, N. Liu, W. Liang, H. Huang, W. Chen, B. Wang, Z. Xie, Recent advances in the development of nanomedicines for the treatment of ischemic stroke, Bioactive Materials, 6 (2021) 2854-2869.

DOI: 10.1016/j.bioactmat.2021.01.023

Google Scholar

[16] L. Li, P. Hao, P. Wei, L. Fu, X. Ai, J. Zhang, J. Zhou, DNA-assisted upconversion nanoplatform for imaging-guided synergistic therapy and laser-switchable drug detoxification, Biomaterials, 136 (2017) 43-55.

DOI: 10.1016/j.biomaterials.2017.05.006

Google Scholar

[17] J. Xie,T. Fan, J. Kim, Y. Xu, Y. Wang, W. Liang, L. Qiao, Z. Wu, Q. Liu, W. Hu, N.Yin, L.Yang, L. Liu, J. Kim, Emetine-loaded black phosphorus hydrogel sensitizes tumor to photothermal therapy through inhibition of stress granule formation, Advanced Functional Materials 2020, 2003891.

DOI: 10.1002/adfm.202003891

Google Scholar

[18] M.B. Applegate, B.P. Partlow, J. Coburn, B. Marelli, F.G. Omenetto, Photocrosslinking of silk fibroin using riboflavin for ocular prostheses, Advanced Materials, 28 (2016) 2464-2464.

DOI: 10.1002/adma.201670084

Google Scholar

[19] P. Bhattacharjee, J. Fernández-Pérez, M. Ahearne, Potential for combined delivery of riboflavin and all-trans retinoic acid, from silk fibroin for corneal bioengineering, Materials Science and Engineering: C, 105 (2019) 110093.

DOI: 10.1016/j.msec.2019.110093

Google Scholar

[20] X. Zhao, Y. Liu, C.Shao, M. Nie, Q. Huang, J. Li, L. Sun, Y. Zhao, Photoresponsive delivery microcarriers for tissue defects repair, Advanced Science, 6 (2019) 1901280.

DOI: 10.1002/advs.201901280

Google Scholar

[21] C. Qi, J. Liu, Y. Jin, L. Xu, G. Wang, Z. Wang, L. Wang, Photo-crosslinkable, injectable sericin hydrogel as 3D biomimetic extracellular matrix for minimally invasive repairing cartilage, Biomaterials, 163 (2018) 89-104.

DOI: 10.1016/j.biomaterials.2018.02.016

Google Scholar

[22] Q. Miao, C. Xie, X. Zhen, Y. Lyu, H. Duan, X.Liu, J. Jokerst, K Pu, Molecular afterglow imaging with bright, biodegradable polymer nanoparticles, Nature biotechnology, 35 (2017) 1102-1110.

DOI: 10.1038/nbt.3987

Google Scholar

[23] M. Sun, D. Yang, W.Fanqi, Z. Wang, H. Ji, Z. Liu, S. Gai,F. Zhang, P. Yang, SiO@CuS nanotubes for photo/chemodynamic and photo-thermal dual-mode synergistic therapy under 808 nm laser irradiation, Journal of materials chemistry. B, (2020).

DOI: 10.1039/d0tb00696c

Google Scholar

[24] C. Cui, C. Fan, Y. Wu, M. Xiao, T. Wu, D. Zhang, X. Chen, B. Liu, Z. Xu, B. Qu, W. Liu, Water-triggered hyperbranched polymer universal adhesives: from strong underwater adhesion to rapid sealing hemostasis, Advanced Materials, 31 (2019) 1905761.

DOI: 10.1002/adma.201905761

Google Scholar

[25] J. Deng, Y. Tang, Q. Zhang, C. Wang, M. Liao, P. Ji, J. Song, G. Luo, L. Chen, X. Ran, A bioinspired medical adhesive derived from skin secretion of andrias davidianus for wound healing, Advanced Functional Materials, 29 (2019) 1809110.

DOI: 10.1002/adfm.201809110

Google Scholar

[26] J. Han, G. Liang, D. Xing, A pH-sensitive zwitterionic iron complex probe with high biocompatibility for tumor-specific magnetic resonance imaging, Chemistry – A European Journal, 25 (2019) 8353-8362.

DOI: 10.1002/chem.201901117

Google Scholar

[27] D. Ling, W. Park, S. j. Park, Y. Lu, K.S. Kim, M.J. Hackett, B.H. Kim, H. Yim, Y.S. Jeon, T. Hyeon, Multifunctional tumor pH-sensitive self-assembled nanoparticles for bimodal imaging and treatment of resistant heterogeneous tumors, Journal of the American Chemical Society, 136 (2014) 5647-5655.

DOI: 10.1021/ja4108287

Google Scholar

[28] X. Meng, H. Zhang, M. Zhang, B. Wang, Y. Liu, Y. Wang, X. Fang, J. Zhang, Z. Yao, W. Bu, Negative CT contrast agents for the diagnosis of malignant osteosarcoma, Advanced Science, 6 (2019) 1901214.

DOI: 10.1002/advs.201901214

Google Scholar

[29] Z. Sun, T. Fan, Q. Liu, L. Huang, H. Zhang, Autologous tumor antigens and boron nanosheet-based nanovaccines for enhanced photo-immunotherapy against immune desert tumors, Nanophotonics,10 (2021).

DOI: 10.1515/nanoph-2021-0229

Google Scholar

[30] Z. Sun, Z. Yih, H. Zhang, X. Ma, W. Su, X. Sun, X. Li, Bio-responsive alginate-keratin composite nanogels with enhanced drug loading efficiency for cancer therapy, Carbohydrate Polymers,175 (2017).

DOI: 10.1016/j.carbpol.2017.07.078

Google Scholar

[31] D. Luo, L. Sang, X. Wang, S, Xu, X. Li, Low temperature, pH-triggered synthesis of collagen–chitosan–hydroxyapatite nanocomposites as potential bone grafting substitutes, Materials Letters, 65 (2011) 2395-2397.

DOI: 10.1016/j.matlet.2011.05.011

Google Scholar