[1]
DF.Williams, On the nature of biomaterials, Biomaterials, 30, (2009), 5897-5909.
Google Scholar
[2]
Q. Zhou, S. Shao, J. Wang, C. Xu, J. Xiang, Y. Piao, Z. Zhou, Q. Yu, J. Tang, X. Liu, Z. Gan, R. Mo, Z. Gu, Y. Shen, Enzyme-activatable polymer–drug conjugate augments tumour penetration and treatment efficacy, Nature Nanotechnology, 14, (2019), 799-809.
DOI: 10.1038/s41565-019-0485-z
Google Scholar
[3]
C.E. Callmann, C.V. Barback, M.P. Thompson, D.J. Hall, R.F. Mattrey, N.C. Gianneschi, Therapeutic enzyme-responsive nanoparticles for targeted delivery and accumulation in tumors, Advanced Materials, 27 (2015) 4611-4615.
DOI: 10.1002/adma.201501803
Google Scholar
[4]
T. Jiang, W. Sun, Q. Zhu, N.A. Burns, S.A. Khan, R. Mo, Z. Gu, Furin-mediated sequential delivery of anticancer cytokine and small-molecule drug shuttled by graphene, Advanced Materials, 27 (2015) 1021-1028.
DOI: 10.1002/adma.201404498
Google Scholar
[5]
Y. Yuan, J. Zhang, X. Qi, S. Li, G. Liu, S. Siddhanta, I. Barman, X. Song, M.T. McMahon, J.W.M. Bulte, Furin-mediated intracellular self-assembly of olsalazine nanoparticles for enhanced magnetic resonance imaging and tumour therapy, Nature Materials, 18 (2019) 1376-1383.
DOI: 10.1038/s41563-019-0503-4
Google Scholar
[6]
Q. Zhou, S. Shao, J. Wang, C. Xu, J. Xiang, Y. Piao, Z. Zhou, Q. Yu, J. Tang, X. Liu, Z. Gan, R. Mo, Z. Gu, Y. Shen, Enzyme-activatable polymer–drug conjugate augments tumour penetration and treatment efficacy, Nature Nanotechnology, 14 (2019) 799-809.
DOI: 10.1038/s41565-019-0485-z
Google Scholar
[7]
A. López-Noriega, E. Ruiz-Hernández, E. Quinlan, G. Storm, W.E. Hennink, F.J. O'Brien, Thermally triggered release of a pro-osteogenic peptide from a functionalized collagen-based scaffold using thermosensitive liposomes, Journal of Controlled Release, 187 (2014) 158-166.
DOI: 10.1016/j.jconrel.2014.05.043
Google Scholar
[8]
J. Shan, B. Tang, L. Liu, X. Sun, W. Shi, T.Yuan, J. Liang, Y. Fan, X. Zhang, Development of chitosan/glycerophosphate/collagen thermo-sensitive hydrogel for endoscopic treatment of mucosectomy-induced ulcer, Materials Science and Engineering, 103 (2019) 109870.
DOI: 10.1016/j.msec.2019.109870
Google Scholar
[9]
H.S. Abandansari, M.H. Ghanian, F. Varzideh, E. Mahmoudi, S. Rajabi, P. Taheri, M.R. Nabid, H. Baharvand, In situ formation of interpenetrating polymer network using sequential thermal and click crosslinking for enhanced retention of transplanted cells, Biomaterials, 170 (2018) 12-25.
DOI: 10.1016/j.biomaterials.2018.04.007
Google Scholar
[10]
Y. Sun, Q. Wang, J. Chen, L. Liu, L. Ding, M. Shen, J. Li, B. Han, Y. Duan, Temperature-sensitive gold nanoparticle-coated pluronic-PLL nanoparticles for drug delivery and chemo-photothermal therapy, Theranostics, 7 (2017) 4424-4444.
DOI: 10.7150/thno.18832
Google Scholar
[11]
Z. Li, H. Shim, M.O. Cho, I.S. Cho, J.H. Lee, S.-W. Kang, B. Kwon, K.M. Huh, Thermo-sensitive injectable glycol chitosan-based hydrogel for treatment of degenerative disc disease, Carbohydrate Polymers, 184 (2018) 342-353.
DOI: 10.1016/j.carbpol.2018.01.006
Google Scholar
[12]
Z. Xie, T. Fan, J. An, W. Choi, Y. Duo, Y. Ge, B. Zhang, G. Nie, N. Xie, T. Zheng, Y. Chen, H. Zhang, J.S. Kim, Emerging combination strategies with phototherapy in cancer nanomedicine, Chemical Society Reviews, 49 (2020) 8065-8087.
DOI: 10.1039/d0cs00215a
Google Scholar
[13]
P. Cheng, J. Zhang, J. Huang, Q. Miao, C. Xu, K. Pu, Near-infrared fluorescence probes to detect reactive oxygen species for keloid diagnosis, Chemical science, 9 (2018) 6340-6347.
DOI: 10.1039/c8sc01865k
Google Scholar
[14]
Q. Miao, D. Yeo, C.Wiraja, J. Zhang, X. Ning, C. Xu, K. Pu, Near-infrared fluorescent molecular probe for sensitive imaging of Keloid, Angewandte Chemie, 57 (2018) 1256-1260.
DOI: 10.1002/anie.201710727
Google Scholar
[15]
X. Tian, T. Fan, W. Zhao, G. Abbas, B. Han, K. Zhang, N. Li, N. Liu, W. Liang, H. Huang, W. Chen, B. Wang, Z. Xie, Recent advances in the development of nanomedicines for the treatment of ischemic stroke, Bioactive Materials, 6 (2021) 2854-2869.
DOI: 10.1016/j.bioactmat.2021.01.023
Google Scholar
[16]
L. Li, P. Hao, P. Wei, L. Fu, X. Ai, J. Zhang, J. Zhou, DNA-assisted upconversion nanoplatform for imaging-guided synergistic therapy and laser-switchable drug detoxification, Biomaterials, 136 (2017) 43-55.
DOI: 10.1016/j.biomaterials.2017.05.006
Google Scholar
[17]
J. Xie,T. Fan, J. Kim, Y. Xu, Y. Wang, W. Liang, L. Qiao, Z. Wu, Q. Liu, W. Hu, N.Yin, L.Yang, L. Liu, J. Kim, Emetine-loaded black phosphorus hydrogel sensitizes tumor to photothermal therapy through inhibition of stress granule formation, Advanced Functional Materials 2020, 2003891.
DOI: 10.1002/adfm.202003891
Google Scholar
[18]
M.B. Applegate, B.P. Partlow, J. Coburn, B. Marelli, F.G. Omenetto, Photocrosslinking of silk fibroin using riboflavin for ocular prostheses, Advanced Materials, 28 (2016) 2464-2464.
DOI: 10.1002/adma.201670084
Google Scholar
[19]
P. Bhattacharjee, J. Fernández-Pérez, M. Ahearne, Potential for combined delivery of riboflavin and all-trans retinoic acid, from silk fibroin for corneal bioengineering, Materials Science and Engineering: C, 105 (2019) 110093.
DOI: 10.1016/j.msec.2019.110093
Google Scholar
[20]
X. Zhao, Y. Liu, C.Shao, M. Nie, Q. Huang, J. Li, L. Sun, Y. Zhao, Photoresponsive delivery microcarriers for tissue defects repair, Advanced Science, 6 (2019) 1901280.
DOI: 10.1002/advs.201901280
Google Scholar
[21]
C. Qi, J. Liu, Y. Jin, L. Xu, G. Wang, Z. Wang, L. Wang, Photo-crosslinkable, injectable sericin hydrogel as 3D biomimetic extracellular matrix for minimally invasive repairing cartilage, Biomaterials, 163 (2018) 89-104.
DOI: 10.1016/j.biomaterials.2018.02.016
Google Scholar
[22]
Q. Miao, C. Xie, X. Zhen, Y. Lyu, H. Duan, X.Liu, J. Jokerst, K Pu, Molecular afterglow imaging with bright, biodegradable polymer nanoparticles, Nature biotechnology, 35 (2017) 1102-1110.
DOI: 10.1038/nbt.3987
Google Scholar
[23]
M. Sun, D. Yang, W.Fanqi, Z. Wang, H. Ji, Z. Liu, S. Gai,F. Zhang, P. Yang, SiO@CuS nanotubes for photo/chemodynamic and photo-thermal dual-mode synergistic therapy under 808 nm laser irradiation, Journal of materials chemistry. B, (2020).
DOI: 10.1039/d0tb00696c
Google Scholar
[24]
C. Cui, C. Fan, Y. Wu, M. Xiao, T. Wu, D. Zhang, X. Chen, B. Liu, Z. Xu, B. Qu, W. Liu, Water-triggered hyperbranched polymer universal adhesives: from strong underwater adhesion to rapid sealing hemostasis, Advanced Materials, 31 (2019) 1905761.
DOI: 10.1002/adma.201905761
Google Scholar
[25]
J. Deng, Y. Tang, Q. Zhang, C. Wang, M. Liao, P. Ji, J. Song, G. Luo, L. Chen, X. Ran, A bioinspired medical adhesive derived from skin secretion of andrias davidianus for wound healing, Advanced Functional Materials, 29 (2019) 1809110.
DOI: 10.1002/adfm.201809110
Google Scholar
[26]
J. Han, G. Liang, D. Xing, A pH-sensitive zwitterionic iron complex probe with high biocompatibility for tumor-specific magnetic resonance imaging, Chemistry – A European Journal, 25 (2019) 8353-8362.
DOI: 10.1002/chem.201901117
Google Scholar
[27]
D. Ling, W. Park, S. j. Park, Y. Lu, K.S. Kim, M.J. Hackett, B.H. Kim, H. Yim, Y.S. Jeon, T. Hyeon, Multifunctional tumor pH-sensitive self-assembled nanoparticles for bimodal imaging and treatment of resistant heterogeneous tumors, Journal of the American Chemical Society, 136 (2014) 5647-5655.
DOI: 10.1021/ja4108287
Google Scholar
[28]
X. Meng, H. Zhang, M. Zhang, B. Wang, Y. Liu, Y. Wang, X. Fang, J. Zhang, Z. Yao, W. Bu, Negative CT contrast agents for the diagnosis of malignant osteosarcoma, Advanced Science, 6 (2019) 1901214.
DOI: 10.1002/advs.201901214
Google Scholar
[29]
Z. Sun, T. Fan, Q. Liu, L. Huang, H. Zhang, Autologous tumor antigens and boron nanosheet-based nanovaccines for enhanced photo-immunotherapy against immune desert tumors, Nanophotonics,10 (2021).
DOI: 10.1515/nanoph-2021-0229
Google Scholar
[30]
Z. Sun, Z. Yih, H. Zhang, X. Ma, W. Su, X. Sun, X. Li, Bio-responsive alginate-keratin composite nanogels with enhanced drug loading efficiency for cancer therapy, Carbohydrate Polymers,175 (2017).
DOI: 10.1016/j.carbpol.2017.07.078
Google Scholar
[31]
D. Luo, L. Sang, X. Wang, S, Xu, X. Li, Low temperature, pH-triggered synthesis of collagen–chitosan–hydroxyapatite nanocomposites as potential bone grafting substitutes, Materials Letters, 65 (2011) 2395-2397.
DOI: 10.1016/j.matlet.2011.05.011
Google Scholar