Bandgap Modulation of the C2N-h2D Nanomaterials under Elastic Strains

Article Preview

Abstract:

Since the C2N-h2D crystal was efficiently synthesized, this study aims to investigate bandgap modulation of nanoribbons and nanotubes. Appling Density Functional Theory (DFT), the band-gap modulation of C2N-h2D nanomaterials is researched under elastic strains. The results of the current study indicate that the band gap of C2N-h2D nanoribbons and nanotubes can be tuned along two directions, namely, stretching or compressing nanoribbons and nanotubes when ɛ is changed from -10% to 10% in zigzag and armchair, respectively. This study also finds that the band gap of the C2N-h2D nanoribbons and nanotubes change with increase of widths or the radii of nanotubes. Therefore, the great potential applications of the C2N-h2D nanomaterials have been predicted in strain sensor and optical electronics at nanoscale.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

71-76

Citation:

Online since:

February 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Q. Tang, Z. Zhou, Progress in Materials Science, 2013, 58, 1244–1315.

Google Scholar

[2] A. K. Geim and K. S. Novoselov, Nat. Mater., 2007, 6, 183–191.

Google Scholar

[3] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, Science, 2004, 306, 666–669.

DOI: 10.1126/science.1102896

Google Scholar

[4] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres and A. K. Geim, Science, 2008, 320, 1308.

DOI: 10.1126/science.1156965

Google Scholar

[5] V.A. Saroka, K.G. Batrakov, V.A. Demin and L.A. Chernozatonskii, J. Phys.: Condens. Matter 2015, 27, 145305 (13pp).

DOI: 10.1088/0953-8984/27/14/145305

Google Scholar

[6] R. Balog, B. Jorgensen, L. Nilsson, M. Andersen, E. Rienks, M. Bianchi, M. Fanetti, E. Laegsgaard, A. Baraldi, S. Lizzit, Z. Sljivancanin, F. Besenbacher, B. Hammer, T. G. Pedersen, P. Hofmann and L. Hornekaer, Nat. Mater., 2010, 9, 315–319.

DOI: 10.1038/nmat2710

Google Scholar

[7] C.B. Sun, Y.Y. Feng, Y. Li, C.Q. Qin, Q.Q. Zhang and W. Feng, Nanoscale, 2014, 6, 2634–2641.

Google Scholar

[8] N.A. Nebogatikova, I.V. Antonova, V.Y. Prinz, V.B. Timofeev and S.A. Smagulova, Carbon, 2014, 77, 1095–1103.

DOI: 10.1016/j.carbon.2014.06.026

Google Scholar

[9] F. Li, Y.F. Li, J. Mater. Chem. C, 2015, 3, 3416—3421.

Google Scholar

[10] X.L. Li, X.J. Wu, X.C. Zeng, and J.L. Yang, Acs Nano, 2012, 6(5), 4104–4112.

Google Scholar

[11] D. Golberg, Y. Bando, Y. Huang, T. Terao, M. Mitome, C. Tang and C. Zhi, Acs Nano, 2010, 4(6), 2979–2993.

DOI: 10.1021/nn1006495

Google Scholar

[12] C.C. Yang, Y.W. Mai, Materials Science and Engineering R, 2014, 79, 1–40.

Google Scholar

[13] E. Kan, H. Ren, F. Wu, Z.Y. Li, R.F. Lu, C.Y. Xiao, K.M. Deng, and J.L. Yang, J. Phys. Chem. C 2012, 116, 3142−3146.

Google Scholar

[14] J.F. Jia, H.S. Wu, H.J. Jiao, ACTA CHIMICA SINICA, 2004, 62, 15, 1385-1391.

Google Scholar

[15] Y. Xie, Y. Luo, S.J. Liu, Acta Physica Sinica, 2008, 57, 07, 4364-4370.

Google Scholar

[16] S.L. Zhang, Z. Yan, Y.F. Li, Z.F. Chen, and H.B. Zeng, Angew. Chem. Int. Ed. 2015, 54, 3112 –3115.

Google Scholar

[17] S.S. Jiang, S. Butler, E. Bianco, O.D. Restrepo, W. Windl & J.E. Goldberger. Nat. Commun, 2014, 5, 3389.

Google Scholar

[18] X.X. Li, X.J. Wu, J.L. Yang, J. Am. Chem. Soc., 2014, 136 (31), 11065–11069.

Google Scholar

[19] Z.Y. Guan, J.J. Wang, J. Huang, X.J. Wu, Q.X. Li, and J.L. Yang, J. Phys. Chem. C, 2014, 118, 22491−22498.

Google Scholar

[20] J. Mahmood, E.K. Lee, M. Jung, D. Shin, I.Y. Jeon, S.M. Jung, H.J. Choi, J.M. Seo, S.Y. Bae, S.D. Sohn, N. Park, J. Hak Oh, H.J. Shin & J.B. Baek, Nature Communications, 2015, 6, 1-7.

DOI: 10.1038/ncomms7486

Google Scholar

[21] B. Delley, J. Chem. Phys., 1990, 92, 508−517.

Google Scholar

[22] B. Delley, J. Chem. Phys. 2000, 113, 7756−7764.

Google Scholar

[23] J.P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865.

Google Scholar

[24] S. Grimme, J. Comput. Chem., 2007, 27, 1787−1799.

Google Scholar

[25] R.K. Ghosh, M. Brahma, and S. Mahapatra. IEEE TRANSACTIONS ON ELECTRON DEVICES, 2014, 61, 2309.

Google Scholar

[26] Y.F. Li and Z.F. Chen. J. Phys. Chem. C, 2014, 118, 1148−1154.

Google Scholar

[27] J. Heyd, G.E. Scuseria and M.J. Ernzerhof, Chem. Phys., 2006, 124, 219906.

Google Scholar

[28] L.Hu, J. Zhao and J.L. Yang, J. Phys.: Condens. Matter, 2014, 26, 335302.

Google Scholar

[29] Y.D. Ma, Y. Dai, W. Wei, B.B. Huang & M.H. Whangbo, SCIENTIFIC REPORTS, 2014, 4, 7297.

Google Scholar

[30] Y. Zhang, X.J. Wu, Q.X. Li, and J.L. Yang, J. Phys. Chem. C, 2012, 116 (16), 9356–9359.

Google Scholar