[1]
A. Iqbal, F. Shahzad, K. Hantanasirisakul, M. Kim, J. Kwon, J. Hong, H. Kim, D. Kim, Y. Gogotsi, C.M. Koo, Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNTx (MXene), Science 369 (2020) 446–450.
DOI: 10.1126/science.aba7977
Google Scholar
[2]
X. Wang, W. Cao, M. Cao, J. Yuan, Assembling nano-microarchitecture for electromagnetic absorbers and smart devices, Adv. Mater. 32 (2020) 2002112.
DOI: 10.1002/adma.202002112
Google Scholar
[3]
Q. Li, Z. Zhang, L. Qi, Q. Liao, Z. Kang, Y. Zhang, Toward the application of high frequency electromagnetic wave absorption by carbon nanostructures, Adv. Sci. 6 (2019) 1801057.
DOI: 10.1002/advs.201801057
Google Scholar
[4]
Z.H. Li, M.F. Shao, L. Zhou, R.K. Zhang, C. Zhang, M. Wei, Directed Growth of Metal-organic Frameworks and their Derived Carbon-based Network for Efficient Electro-catalytic Oxygen Reduction, Adv. Mater. 28 (2016) 2337-2344.
DOI: 10.1002/adma.201505086
Google Scholar
[5]
S. Wang, N. Xiao, Y. Zhou, Z. Ling, M.Y. Li, Lightweight Carbon Foam from Coal Liquefaction Residue with Broad-band Microwave Absorbing Capability, Carbon. 105 (2016) 224-226.
DOI: 10.1016/j.carbon.2016.04.040
Google Scholar
[6]
T.S. Zhang, J. Wang, W.T. Zhang, C.Y. Yang, L. Zhang, W.X. Zhu, et al. Amorphous Fe/Mn Bimetal-organic Frameworks: Outer and Inner Structural Design for Efficient Arsenic Removal, J. Mater. Chem. A.7 (2019) 2845-2854.
DOI: 10.1039/c8ta10394a
Google Scholar
[7]
Z. Xiang, Y. Song, J. Xiong, Z. Pan, X. Wang, L. Liu, R. Liu, H. Yang, Enhanced Electromagnetic Wave Absorption of Nanaporous Fe3O4@carbon Composites Derived from Metal-organic Frameworks, Carbon. 142 (2019) 20-31.
DOI: 10.1016/j.carbon.2018.10.014
Google Scholar
[8]
T. Kim, J. Lee, K. Lee, B. Park, B.M. Jung, S.B. Lee, Magnetic and Dispersible FeCoNi-graphene Film Produced without Heat Treatment for Electromagnetic Wave Absorption, Chem. Eng. J. 361 (2019) 1182-1189.
DOI: 10.1016/j.cej.2018.12.172
Google Scholar
[9]
Z. Yang, H. Lv,R. Wu, Rational Construction of Graphene Oxide with MOF-derived Porous NiFe@C Nanocubes for High-performance Microwave Attenuation, Nano Research 9 (2016) 3671-3682.
DOI: 10.1007/s12274-016-1238-z
Google Scholar
[10]
J. Xiong, Z. Xiang, J. Zha, L. Yu, E. Cui, B. Deng, Z. Liu, R. Liu, W. La, Layered NiCo Alloy Nanoparticles/Nanoporous Carbon Composites Derived from Bimetallic MOFs with Enhanced Electromagnetic Wave Absorption Performance, Carbon. 154 (2019) 391401.
DOI: 10.1016/j.carbon.2019.07.096
Google Scholar
[11]
X. Qiu, L. Wang, H. L. Zhu, Y. Guan, Q. Zhang, Lightweight and Efficient Microwave Absorbing Materials based on Walnut Shell-derived Nanoporous Carbon, Nanoscale 9 (2017) 7408-7418.
DOI: 10.1039/c7nr02628e
Google Scholar
[12]
L. Huang, J. Li, Z. Wang, Y. Li, X. He, Y. Yuan, Microwave Absorption Enhancement of Porous C@CoFe2O4 Nanocomposites Derived from Eggshell Membrane, J. Carbon. 143 (2019) 507-516.
DOI: 10.1016/j.carbon.2018.11.042
Google Scholar
[13]
Y. Yin, X. Liu,X. Wei, R. Yu, J. Shtui, Porous CNTs/Co Composite Derived from Zeolitic imidazolate Framework: a Lightweight, Ultrathin, and Highly Efficient Electromagnetic Wave Absorber, ACS. Appl. Mater. Interface. 8 (2016) 34686-34698.
DOI: 10.1021/acsami.6b12178
Google Scholar
[14]
F. Qin, C. Brosseau, A Review and Analysis of Microwave Absorption in Polymer Composites Filled with Carbonaceous Particles, J. Appl. Phys. 111 (2012) 061301.
DOI: 10.1063/1.3688435
Google Scholar
[15]
C. He, S. Qiu, X. Wang, J. Liu, L. Luan, W. Liu, M. Itoh, Machida, Facile Synthesis of Hollow Porous Cobalt Spheres and their Enhanced Electromagnetic Properties, J. Mater. Chem. 22 (2012) 22160-22166.
DOI: 10.1039/c2jm33068g
Google Scholar
[16]
R. Qiang, Y. Du, D. Chen, W. Ma, Y. Wang, P. Xu, J. Ma, H. Zhao, X. Han, Electromagnetic Functionalized Co/C Composites by in Situ Pyrolysis of Metal-organic Frameworks (ZIF-67), J. Alloy. Comp. 681 (2016) 384-393.
DOI: 10.1016/j.jallcom.2016.04.225
Google Scholar
[17]
Q. Li, H. Pan, D. Higgins, R. Cao, G. Zhang, H. Lv, K. Wu, J. Cho, G. Wu, Metal-organic Framework derived Bamboo-like Nitrogen-doped Graphene Tubes as an Active Matrix for Hybrid Oxygen-reduction Electrocatalysts, Small 11 (2015) 1443-1452.
DOI: 10.1002/smll.201402069
Google Scholar
[18]
Y.J. Wan, P.L. Zhu, S.H. Yu, R. Sun, C.P. Wong, W.H. Liao, Ultralight, Super-elastic and Volume-preserving Cellulose Fiber/graphene Aerogel for High-performance Electromagnetic Interference Shielding, Carbon. 115 (2017) 629-639.
DOI: 10.1016/j.carbon.2017.01.054
Google Scholar
[19]
K. Yue, Zeng-Yong, M.A. Tian, Y. Bo, K. Yue, Development of Microwave Absorbing Materials Based on Graphene, J. Inorg. Mater. 33 (2018) 1259-1273.
DOI: 10.15541/jim20180178
Google Scholar
[20]
R. Shu, W. Li, Y. Wu, J. Zhang, G. Zhang, Nitrogen-doped Co-C/Mwcnts Nanocomposites Derived from Bimetallic Metal-organic Frameworks for Electromagnetic Wave Absorption in the X-band, Chem. Eng. J. 362 (2019) 513-524.
DOI: 10.1016/j.cej.2019.01.090
Google Scholar
[21]
C. Luo, T. Jiao, J. Gu, Y. Tang, J. Kong, Graphene shield by SiBCN ceramic: A Promising High-temperature Electromagnetic Wave-absorbing Material with Oxidation Resistance, ACS Appl. Mater. Interfaces 10 (2018) 39307-39318.
DOI: 10.1021/acsami.8b15365
Google Scholar
[22]
Y. Li, F. Qin, L. Quan, H. Wei, Y. Luo, H. Wang, H.x. Peng, Vertical Interphase Enabled Tunable Microwave Dielectric Response in Carbon Nanocomposites, Carbon 153 (2019) 447-457.
DOI: 10.1016/j.carbon.2019.07.048
Google Scholar
[23]
M. Fu, Q. Jiao, Y. Zhao, H. Li, Vapor Diffusion Synthesis of CoFe2O4 Hollow Sphere/graphene Composites as Absorbing Materials, J. Mater. Chem. A. 2(2014) 735-744.
DOI: 10.1039/c3ta14050d
Google Scholar
[24]
K. Wang, Y. Chen, R. Tian, H. Li, Y. Zhou, H. Duan, H. Liu, Porous Co-C Core-shell Nanocomposites Derived from Co-Mof-74 with Enhanced Electromagnetic Wave Absorption Performance. ACS. Appl. Mater. Interfaces. 10 (2018) 11333-11342.
DOI: 10.1021/acsami.8b00965
Google Scholar
[25]
L. He, F. Weniger, H. Neumann, M. Beller, Synthesis, Characterization, and Application of Metal Nanoparticles Supported on Nitrogen-Doped Carbon: Catalysis beyond Electrochemistry. Angew. Chem. Int. Ed. 55 (2016) 12582-12594.
DOI: 10.1002/anie.201603198
Google Scholar
[26]
P. Raju, P. Neelima, G. Neeraja Rani, M. Kanakadurga, Enhanced microwave absorption properties of Ni0.48Cu0.12Zn0.4Fe2O4 + polyaniline nanocomposites, J. Phys. Chem. Solids 154 (2021) 110048.
DOI: 10.1016/j.jpcs.2021.110048
Google Scholar