Microstructure Evolution at High Temperatures for Co-MOF-74 as High-Efficiency Electromagnetic Absorbers

Article Preview

Abstract:

Increasing demands of microwave absorbents require new approaches to enhance the absorbing performance. Metal−organic frameworks (MOFs) could be developed as effective absorbers owing to their outstanding features including intrinsic porosity and high specific area. Herein, novel nanostructured Co-MOF-74 composites have been successfully fabricated via a simple solvothermal method. Excellent absorption performance was achieved for the composite with a minimum reflection loss (RL) of −25.5 dB at 2.5 mm and a broad absorption bandwidth (RL < −10 dB) of 6.7 GHz. Such absorber could be developed as lightweight and high-efficiency absorbing materials, and this work provides inspiration for the design of advanced absorbers with strong dissipation capacity and broad effective bandwidth.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

29-35

Citation:

Online since:

February 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Iqbal, F. Shahzad, K. Hantanasirisakul, M. Kim, J. Kwon, J. Hong, H. Kim, D. Kim, Y. Gogotsi, C.M. Koo, Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNTx (MXene), Science 369 (2020) 446–450.

DOI: 10.1126/science.aba7977

Google Scholar

[2] X. Wang, W. Cao, M. Cao, J. Yuan, Assembling nano-microarchitecture for electromagnetic absorbers and smart devices, Adv. Mater. 32 (2020) 2002112.

DOI: 10.1002/adma.202002112

Google Scholar

[3] Q. Li, Z. Zhang, L. Qi, Q. Liao, Z. Kang, Y. Zhang, Toward the application of high frequency electromagnetic wave absorption by carbon nanostructures, Adv. Sci. 6 (2019) 1801057.

DOI: 10.1002/advs.201801057

Google Scholar

[4] Z.H. Li, M.F. Shao, L. Zhou, R.K. Zhang, C. Zhang, M. Wei, Directed Growth of Metal-organic Frameworks and their Derived Carbon-based Network for Efficient Electro-catalytic Oxygen Reduction, Adv. Mater. 28 (2016) 2337-2344.

DOI: 10.1002/adma.201505086

Google Scholar

[5] S. Wang, N. Xiao, Y. Zhou, Z. Ling, M.Y. Li, Lightweight Carbon Foam from Coal Liquefaction Residue with Broad-band Microwave Absorbing Capability, Carbon. 105 (2016) 224-226.

DOI: 10.1016/j.carbon.2016.04.040

Google Scholar

[6] T.S. Zhang, J. Wang, W.T. Zhang, C.Y. Yang, L. Zhang, W.X. Zhu, et al. Amorphous Fe/Mn Bimetal-organic Frameworks: Outer and Inner Structural Design for Efficient Arsenic Removal, J. Mater. Chem. A.7 (2019) 2845-2854.

DOI: 10.1039/c8ta10394a

Google Scholar

[7] Z. Xiang, Y. Song, J. Xiong, Z. Pan, X. Wang, L. Liu, R. Liu, H. Yang, Enhanced Electromagnetic Wave Absorption of Nanaporous Fe3O4@carbon Composites Derived from Metal-organic Frameworks, Carbon. 142 (2019) 20-31.

DOI: 10.1016/j.carbon.2018.10.014

Google Scholar

[8] T. Kim, J. Lee, K. Lee, B. Park, B.M. Jung, S.B. Lee, Magnetic and Dispersible FeCoNi-graphene Film Produced without Heat Treatment for Electromagnetic Wave Absorption, Chem. Eng. J. 361 (2019) 1182-1189.

DOI: 10.1016/j.cej.2018.12.172

Google Scholar

[9] Z. Yang, H. Lv,R. Wu, Rational Construction of Graphene Oxide with MOF-derived Porous NiFe@C Nanocubes for High-performance Microwave Attenuation, Nano Research 9 (2016) 3671-3682.

DOI: 10.1007/s12274-016-1238-z

Google Scholar

[10] J. Xiong, Z. Xiang, J. Zha, L. Yu, E. Cui, B. Deng, Z. Liu, R. Liu, W. La, Layered NiCo Alloy Nanoparticles/Nanoporous Carbon Composites Derived from Bimetallic MOFs with Enhanced Electromagnetic Wave Absorption Performance, Carbon. 154 (2019) 391401.

DOI: 10.1016/j.carbon.2019.07.096

Google Scholar

[11] X. Qiu, L. Wang, H. L. Zhu, Y. Guan, Q. Zhang, Lightweight and Efficient Microwave Absorbing Materials based on Walnut Shell-derived Nanoporous Carbon, Nanoscale 9 (2017) 7408-7418.

DOI: 10.1039/c7nr02628e

Google Scholar

[12] L. Huang, J. Li, Z. Wang, Y. Li, X. He, Y. Yuan, Microwave Absorption Enhancement of Porous C@CoFe2O4 Nanocomposites Derived from Eggshell Membrane, J. Carbon. 143 (2019) 507-516.

DOI: 10.1016/j.carbon.2018.11.042

Google Scholar

[13] Y. Yin, X. Liu,X. Wei, R. Yu, J. Shtui, Porous CNTs/Co Composite Derived from Zeolitic imidazolate Framework: a Lightweight, Ultrathin, and Highly Efficient Electromagnetic Wave Absorber, ACS. Appl. Mater. Interface. 8 (2016) 34686-34698.

DOI: 10.1021/acsami.6b12178

Google Scholar

[14] F. Qin, C. Brosseau, A Review and Analysis of Microwave Absorption in Polymer Composites Filled with Carbonaceous Particles, J. Appl. Phys. 111 (2012) 061301.

DOI: 10.1063/1.3688435

Google Scholar

[15] C. He, S. Qiu, X. Wang, J. Liu, L. Luan, W. Liu, M. Itoh, Machida, Facile Synthesis of Hollow Porous Cobalt Spheres and their Enhanced Electromagnetic Properties, J. Mater. Chem. 22 (2012) 22160-22166.

DOI: 10.1039/c2jm33068g

Google Scholar

[16] R. Qiang, Y. Du, D. Chen, W. Ma, Y. Wang, P. Xu, J. Ma, H. Zhao, X. Han, Electromagnetic Functionalized Co/C Composites by in Situ Pyrolysis of Metal-organic Frameworks (ZIF-67), J. Alloy. Comp. 681 (2016) 384-393.

DOI: 10.1016/j.jallcom.2016.04.225

Google Scholar

[17] Q. Li, H. Pan, D. Higgins, R. Cao, G. Zhang, H. Lv, K. Wu, J. Cho, G. Wu, Metal-organic Framework derived Bamboo-like Nitrogen-doped Graphene Tubes as an Active Matrix for Hybrid Oxygen-reduction Electrocatalysts, Small 11 (2015) 1443-1452.

DOI: 10.1002/smll.201402069

Google Scholar

[18] Y.J. Wan, P.L. Zhu, S.H. Yu, R. Sun, C.P. Wong, W.H. Liao, Ultralight, Super-elastic and Volume-preserving Cellulose Fiber/graphene Aerogel for High-performance Electromagnetic Interference Shielding, Carbon. 115 (2017) 629-639.

DOI: 10.1016/j.carbon.2017.01.054

Google Scholar

[19] K. Yue, Zeng-Yong, M.A. Tian, Y. Bo, K. Yue, Development of Microwave Absorbing Materials Based on Graphene, J. Inorg. Mater. 33 (2018) 1259-1273.

DOI: 10.15541/jim20180178

Google Scholar

[20] R. Shu, W. Li, Y. Wu, J. Zhang, G. Zhang, Nitrogen-doped Co-C/Mwcnts Nanocomposites Derived from Bimetallic Metal-organic Frameworks for Electromagnetic Wave Absorption in the X-band, Chem. Eng. J. 362 (2019) 513-524.

DOI: 10.1016/j.cej.2019.01.090

Google Scholar

[21] C. Luo, T. Jiao, J. Gu, Y. Tang, J. Kong, Graphene shield by SiBCN ceramic: A Promising High-temperature Electromagnetic Wave-absorbing Material with Oxidation Resistance, ACS Appl. Mater. Interfaces 10 (2018) 39307-39318.

DOI: 10.1021/acsami.8b15365

Google Scholar

[22] Y. Li, F. Qin, L. Quan, H. Wei, Y. Luo, H. Wang, H.x. Peng, Vertical Interphase Enabled Tunable Microwave Dielectric Response in Carbon Nanocomposites, Carbon 153 (2019) 447-457.

DOI: 10.1016/j.carbon.2019.07.048

Google Scholar

[23] M. Fu, Q. Jiao, Y. Zhao, H. Li, Vapor Diffusion Synthesis of CoFe2O4 Hollow Sphere/graphene Composites as Absorbing Materials, J. Mater. Chem. A. 2(2014) 735-744.

DOI: 10.1039/c3ta14050d

Google Scholar

[24] K. Wang, Y. Chen, R. Tian, H. Li, Y. Zhou, H. Duan, H. Liu, Porous Co-C Core-shell Nanocomposites Derived from Co-Mof-74 with Enhanced Electromagnetic Wave Absorption Performance. ACS. Appl. Mater. Interfaces. 10 (2018) 11333-11342.

DOI: 10.1021/acsami.8b00965

Google Scholar

[25] L. He, F. Weniger, H. Neumann, M. Beller, Synthesis, Characterization, and Application of Metal Nanoparticles Supported on Nitrogen-Doped Carbon: Catalysis beyond Electrochemistry. Angew. Chem. Int. Ed. 55 (2016) 12582-12594.

DOI: 10.1002/anie.201603198

Google Scholar

[26] P. Raju, P. Neelima, G. Neeraja Rani, M. Kanakadurga, Enhanced microwave absorption properties of Ni0.48Cu0.12Zn0.4Fe2O4 + polyaniline nanocomposites, J. Phys. Chem. Solids 154 (2021) 110048.

DOI: 10.1016/j.jpcs.2021.110048

Google Scholar