Optimized Lithium-Indium Chloride Solid Electrolyte for High Energy All-Solid-State Batteries

Article Preview

Abstract:

All-solid-state battery is a promising next-generation energy storage and conversion device and the development of solid electrolyte is very important as the core of all solid-state batteries. Herein lithium-indium chloride solid electrolyte is successfully prepared and the ionic conductivity is increased from 1.07 to 1.41 mS/cm by optimizing the vacuum parameter in the process of preparation. The samples have typical C2/m space group of cubic crystal system, and the vacuum optimized sample has more regular ion arrangement, better crystallinity and fewer lattice defects. The prepared sample is used as the electrolyte layer and the electrolyte part of the composite cathode, and the layered oxide LiNi0.6Co0.2Mn0.2O2 without surface modification was used as the active material. After assembling the cell, the initial discharge specific capacity of the cell was tested to be 157.5mAh/g. In addition, the phase transition of the composite cathode is analyzed under different charge and discharge state. It is found that the use of the lithium-indium chloride solid electrolyte in composite electrode does not affect the REDOX reaction of LiNi0.6Co0.2Mn0.2O2 layered oxide, indicating that the electrolyte material is stable and compatible with layered cathode material, showing its excellent application prospect.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-8

Citation:

Online since:

February 2022

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. B. Goodenough, Y. Kim, Challenges for Rechargeable Li Batteries, Chem. Mater. 22 (2010) 587-603.

Google Scholar

[2] A. Manthiram, X. Yu, S. Wang, Lithium battery chemistries enabled by solid-state electrolytes, Nat. Rev. Mater. 2 (2017) 16103.

DOI: 10.1038/natrevmats.2016.103

Google Scholar

[3] T. Famprikis, P. Canepa, J. A. Dawson, M. S. Islam, C. Masquelier, Fundamentals of inorganic solid-state electrolytes for batteries, Nat. Mater. 18 (2019) 1278-1291.

DOI: 10.1038/s41563-019-0431-3

Google Scholar

[4] S. Kaboli, H. Demers, A. Paolella, A. Darwiche, M. Dontigny, D. Clement, A. Guerfi, M. L. Trudeau, J. B. Goodenough, K. Zaghib, Behavior of Solid Electrolyte in Li-Polymer Battery with NMC Cathode via in-Situ Scanning Electron Microscopy, Nano Lett. 20 (2020) 1607-1613.

DOI: 10.1021/acs.nanolett.9b04452

Google Scholar

[5] S. Stramare, V. Thangadurai, W. Weppner, Lithium Lanthanum Titanates: A Review, Chem. Mater. 15 (2003) 3974-3990.

DOI: 10.1021/cm0300516

Google Scholar

[6] J. van den Broek, S. Afyon, J. L. M. Rupp, Interface-Engineered All-Solid-State Li-Ion Batteries Based on Garnet-Type Fast Li+ Conductors, Adv. Energy Mater. 6 (2016) 1600736.

DOI: 10.1002/aenm.201600736

Google Scholar

[7] S. Kim, H. Oguchi, N. Toyama, T. Sato, S. Takagi, T. Otomo, D. Arunkumar, N. Kuwata, J. Kawamura, S. I. Orimo, A complex hydride lithium superionic conductor for high-energy-density all-solid-state lithium metal batteries, Nat. Commun. 10 (2019) 1081.

DOI: 10.1038/s41467-019-09061-9

Google Scholar

[8] L. Duchêne, A. Remhof, H. Hagemann, C. Battaglia, Status and prospects of hydroborate electrolytes for all-solid-state batteries, Energy Stor. Mater. 25 (2020) 782-794.

DOI: 10.1016/j.ensm.2019.08.032

Google Scholar

[9] A. Sakuda, A. Hayashi, M. Tatsumisago, Interfacial Observation between LiCoO2 Electrode and Li2S−P2S5 Solid Electrolytes of All-Solid-State Lithium Secondary Batteries Using Transmission Electron Microscopy, Chem. Mater. 22 (2009) 949-956.

DOI: 10.1021/cm901819c

Google Scholar

[10] N. Kamaya, K. Homma, Y. Yamakawa, M. Hirayama, R. Kanno, M. Yonemura, T. Kamiyama, Y. Kato, S. Hama, K. Kawamoto, A. Mitsui, A lithium superionic conductor, Nat. Mater. 10 (2011) 682-686.

DOI: 10.1038/nmat3066

Google Scholar

[11] Y. Li, X. Wang, H. Zhou, X. Xing, A. Banerjee, J. Holoubek, H. Liu, Y. S. Meng, P. Liu, Thin Solid Electrolyte Layers Enabled by Nanoscopic Polymer Binding, ACS Energy Lett. 5 (2020) 955-961.

DOI: 10.1021/acsenergylett.0c00040

Google Scholar

[12] Y. Kato, S. Hori, T. Saito, K. Suzuki, M. Hirayama, A. Mitsui, M. Yonemura, H. Iba, R. Kanno, High-power all-solid-state batteries using sulfide superionic conductors, Nat. Energy 1 (2016) 16030.

DOI: 10.1038/nenergy.2016.30

Google Scholar

[13] T. Asano, A. Sakai, S. Ouchi, M. Sakaida, A. Miyazaki, S. Hasegawa, Solid Halide Electrolytes with High Lithium-Ion Conductivity for Application in 4 V Class Bulk-Type All-Solid-State Batteries, Adv. Mater. 30 (2018) 1803075.

DOI: 10.1002/adma.201803075

Google Scholar

[14] X. Li, J. Liang, N. Chen, J. Luo, K. R. Adair, C. Wang, M. N. Banis, T.-K. Sham, L. Zhang, S. Zhao, S. Lu, H. Huang, R. Li, X. Sun, Water-Mediated Synthesis of a Superionic Halide Solid Electrolyte, Angew. Chem. Int. Ed. 58 (2019) 16427-16432.

DOI: 10.1002/anie.201909805

Google Scholar

[15] X. Li, J. Liang, J. Luo, M. N. Banis, C. Wang, W. Li, S. Deng, C. Yu, F. Zhao, Y. Hu, T.-K. Sham, L. Zhang, S. Zhao, S. Lu, H. Huang, R. Li, K. R. Adaira, X. Sun, Air-stable Li3InCl6 electrolyte with high voltage compatibility for all-solid-state batteries, Energy Environ. Sci. 12 (2019) 2665-2671.

DOI: 10.1039/c9ee02311a

Google Scholar