[1]
Y. Zhang, T.-T. Zuo, J. Popovic, K. Lim, Y.-X. Yin, J. Maier, Y.-G. Guo, Towards better Li metal anodes: challenges and strategies, Mater. Today 33 (2020) 56-74.
DOI: 10.1016/j.mattod.2019.09.018
Google Scholar
[2]
A. Zhamu, G.R. Chen, C.G. Liu, D. Neff, Q. Fang, Z.N. Yu, W. Xiong, Y.B. Wang, X.Q. Wang, B.Z. Jang, Reviving rechargeable lithium metal batteries: enabling next-generation high-energy and high-power cells, Energ. Environ. Sci. 5 (2012) 5701-5707.
DOI: 10.1039/c2ee02911a
Google Scholar
[3]
Y.S. Hong, C.Z. Zhao, Y. Xiao, R. Xu, J.J. Xu, J.Q. Huang, Q. Zhang, X.Q. Yu, H. Li, Safe lithium-metal anodes for Li-O2 batteries: from fundamental chemistry to advanced characterization and effective protection, Batteries & Supercaps 2 (2019) 638-658.
DOI: 10.1002/batt.201900031
Google Scholar
[4]
X. Chen, T.Z. Hou, K.A. Persson, Q. Zhang, Combining theory and experiment in lithium-sulfur batteries: Current progress and future perspectives, Mater. Today 22 (2019) 142-158.
DOI: 10.1016/j.mattod.2018.04.007
Google Scholar
[5]
M.Q. Wang, Z. Peng, W.W. Luo, F.H. Ren, Z.D. Li, Q. Zhang, H.Y. He, C.Y. Ouyang, D.Y. Wang, Tailoring lithium deposition via an SEI-functionalized membrane derived from LiF decorated layered carbon structure, Adv. Energy Mater. 9 (2019) 1802912.
DOI: 10.1002/aenm.201802912
Google Scholar
[6]
Y. Kim, D. Koo, S. Ha, S.C. Jung, T. Yim, H. Kim, S.K. Oh, D.M. Kim, A. Choi, Y. Kang, K.H. Ryu, M. Jang, Y.K. Han, S.M. Oh, K.T. Lee, Two-dimensional phosphorene-derived protective layers on a lithium metal anode for lithium-oxygen batteries, ACS Nano 12 (2018) 4419-4430.
DOI: 10.1021/acsnano.8b00348
Google Scholar
[7]
Z.H. Li, X.L. Li, L. Zhou, Z.C. Xiao, S.K. Zhou, X.H. Zhang, L.D. Li, L.J. Zhi, A synergistic strategy for stable lithium metal anodes using 3D fluorine-doped graphene shuttle-implanted porous carbon networks, Nano Energy 49 (2018) 179-185.
DOI: 10.1016/j.nanoen.2018.04.040
Google Scholar
[8]
G.Y. Zheng, S.W. Lee, Z. Liang, H.-W. Lee, K. Yan, H.B. Yao, H.T. Wang, W.Y. Li, S. Chu, Y. Cui, Interconnected hollow carbon nanospheres for stable lithium metal anodes, Nat. nanotech. 9 (2014) 618-623.
DOI: 10.1038/nnano.2014.152
Google Scholar
[9]
C.-Z. Zhao, H. Duan, J.-Q. Huang, J. Zhang, Q. Zhang, Y.-G. Guo, L.-J. Wan, Designing solid-state interfaces on lithium-metal anodes: a review, Sci. China Chem. 62 (2019) 1286-1299.
DOI: 10.1007/s11426-019-9519-9
Google Scholar
[10]
Y. Xu, T. Li, L. Wang, Y. Kang, Interlayered dendrite-free lithium plating for high-performance lithium-metal batteries, Adv. mater. 31 (2019) e1901662.
DOI: 10.1002/adma.201901662
Google Scholar
[11]
W.W. Wang, X.Y. Yue, J.K. Meng, J.Y. Wang, X.X. Wang, H. Chen, D.R. Shi, J. Fu, Y.N. Zhou, J. Chen, Z.W. Fu, Lithium phosphorus oxynitride as an efficient protective layer on lithium metal anodes for advanced lithium-sulfur batteries, Energy Storage Mater. 18 (2019) 414-422.
DOI: 10.1016/j.ensm.2018.08.010
Google Scholar
[12]
H.S. Wang, Y.Y. Liu, Y.Z. Li, Y. Cui, Lithium metal anode materials design: interphase and host, Electrochem. Energy Rev. 2 (2019) 509-517.
DOI: 10.1007/s41918-019-00054-2
Google Scholar
[13]
Y. Li, Y. Sun, A. Pei, K. Chen, A. Vailionis, Y. Li, G. Zheng, J. Sun, Y. Cui, Robust pinhole-free Li3N solid electrolyte grown from molten lithium, ACS Central Sci. 4 (2018) 97-104.
DOI: 10.1021/acscentsci.7b00480
Google Scholar
[14]
G.A. Umeda, E. Menke, M. Richard, K.L. Stamm, F. Wudl, B. Dunn, Protection of lithium metal surfaces using tetraethoxysilane, J. Mater. Chem. 21 (2011) 1593-1599.
DOI: 10.1039/c0jm02305a
Google Scholar
[15]
J.G. Zhu, P.K. Li, X. Chen, D. Legut, Y.C. Fan, R.F. Zhang, Y.Y. Lu, X.B. Cheng, Q.F. Zhang, Rational design of graphitic-inorganic bi-layer artificial SEI for stable lithium metal anode, Energy Storage Mater. 16 (2019) 426-433.
DOI: 10.1016/j.ensm.2018.06.023
Google Scholar
[16]
D. Zhang, S. Wang, B. Li, Y. Gong, S. Yang, Horizontal growth of lithium on parallelly aligned MXene layers towards dendrite-free metallic lithium anodes, Adv. Mater. 31 (2019) e1901820.
DOI: 10.1002/adma.201901820
Google Scholar
[17]
W. Lu, L.Q. Sun, Y. Zhao, T. Wu, L. Cong, J. Liu, Y.L. Liu, H.M. Xie, Elongating the cycle life of lithium metal batteries in carbonate electrolyte with gradient solid electrolyte interphase layer, Energy Storage Mater. 34 (2021) 241-249.
DOI: 10.1016/j.ensm.2020.09.017
Google Scholar
[18]
S.D. Ware, C.J. Hansen, J.P. Jones, J. Hennessy, R.V. Bugga, K.A. See, Fluoride in the SEI stabilizes the Li metal interface in Li-S batteries with solvate electrolytes, ACS Appl. Mater. Inter. 13 (2021) 18865-18875.
DOI: 10.1021/acsami.1c02629
Google Scholar
[19]
M. Alhabeb, K. Maleski, B. Anasori, P. Lelyukh, L. Clark, S. Sin, Y. Gogotsi, Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene), Chem. Mater. 29 (2017) 7633-7644.
DOI: 10.1021/acs.chemmater.7b02847
Google Scholar
[20]
l.x. liu, w. chen, h.b. zhang, q.w. wang, f.l. guan, z.z. yu, flexible and multifunctional silk textiles with biomimetic leaf-like MXene/silver nanowire nanostructures for electromagnetic interference shielding, humidity monitoring, and self-derived hydrophobicity, Adv. Funct. Mater. 29 (2019) 1905197.
DOI: 10.1002/adfm.201905197
Google Scholar
[21]
Y. Wang, Z. Wang, L. Zhao, Q. Fan, X. Zeng, S. Liu, W.K. Pang, Y.B. He, Z. Guo, Lithium metal electrode with increased air stability and robust solid electrolyte interphase realized by silane coupling agent modification, Adv. Mater. 33 (2021) e2008133.
DOI: 10.1002/adma.202008133
Google Scholar
[22]
X.W. Shen, Y.T. Li, T. Qian, J. Liu, J.Q. Zhou, C.L. Yan, J.B. Goodenough, Lithium anode stable in air for low-cost fabrication of a dendrite-free lithium battery, Nat. Comm. 10 (2019) 900.
DOI: 10.1038/s41467-019-08767-0
Google Scholar
[23]
Y.Z. Yao, X.H. Zhao, A.A. Razzaq, Y.T. Gu, X.T. Yuan, R. Shah, Y.B. Lian, J.X. Lei, Q.Q. Mu, Y. Ma, Y. Peng, Z. Deng, Z.F. Liu, Mosaic rGO layers on lithium metal anodes for the effective mediation of lithium plating and stripping, J. Mater. Chem. A 7 (2019) 12214-12224.
DOI: 10.1039/c9ta03679b
Google Scholar