MXenes Composites as the Protective Layer for Li Metal Electrodes

Article Preview

Abstract:

The life and safety issues of Li metal electrodes seriously hinder its application. In order to solve this problem, MXene protected Li electrode has been prepared. Due to the formation of MXene-Ti3C2Tx interface layer, not only the uneven deposition of Li could be alleviated, but also the unstable formation of solid electrolyte interphase can be suppressed. Thus, the MXene-Ti3C2Tx@Li electrodes have exhibited excellent cycling stability. The cycling performance of MXene-Ti3C2Tx@Li electrodes have been proved by symmetric cells, which exhibit relatively stable voltage plateau and a small voltage hysteresis even after 29000 min for stripping/plating cycling (about 230 cycles) under current density of 5 A cm-1 and specific capacity of 5 Ah cm-1. Overall, this study demonstrates MXenes as a critical enabler to realize high-performance Li metal batteries.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

9-14

Citation:

Online since:

February 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Zhang, T.-T. Zuo, J. Popovic, K. Lim, Y.-X. Yin, J. Maier, Y.-G. Guo, Towards better Li metal anodes: challenges and strategies, Mater. Today 33 (2020) 56-74.

DOI: 10.1016/j.mattod.2019.09.018

Google Scholar

[2] A. Zhamu, G.R. Chen, C.G. Liu, D. Neff, Q. Fang, Z.N. Yu, W. Xiong, Y.B. Wang, X.Q. Wang, B.Z. Jang, Reviving rechargeable lithium metal batteries: enabling next-generation high-energy and high-power cells, Energ. Environ. Sci. 5 (2012) 5701-5707.

DOI: 10.1039/c2ee02911a

Google Scholar

[3] Y.S. Hong, C.Z. Zhao, Y. Xiao, R. Xu, J.J. Xu, J.Q. Huang, Q. Zhang, X.Q. Yu, H. Li, Safe lithium-metal anodes for Li-O2 batteries: from fundamental chemistry to advanced characterization and effective protection, Batteries & Supercaps 2 (2019) 638-658.

DOI: 10.1002/batt.201900031

Google Scholar

[4] X. Chen, T.Z. Hou, K.A. Persson, Q. Zhang, Combining theory and experiment in lithium-sulfur batteries: Current progress and future perspectives, Mater. Today 22 (2019) 142-158.

DOI: 10.1016/j.mattod.2018.04.007

Google Scholar

[5] M.Q. Wang, Z. Peng, W.W. Luo, F.H. Ren, Z.D. Li, Q. Zhang, H.Y. He, C.Y. Ouyang, D.Y. Wang, Tailoring lithium deposition via an SEI-functionalized membrane derived from LiF decorated layered carbon structure, Adv. Energy Mater. 9 (2019) 1802912.

DOI: 10.1002/aenm.201802912

Google Scholar

[6] Y. Kim, D. Koo, S. Ha, S.C. Jung, T. Yim, H. Kim, S.K. Oh, D.M. Kim, A. Choi, Y. Kang, K.H. Ryu, M. Jang, Y.K. Han, S.M. Oh, K.T. Lee, Two-dimensional phosphorene-derived protective layers on a lithium metal anode for lithium-oxygen batteries, ACS Nano 12 (2018) 4419-4430.

DOI: 10.1021/acsnano.8b00348

Google Scholar

[7] Z.H. Li, X.L. Li, L. Zhou, Z.C. Xiao, S.K. Zhou, X.H. Zhang, L.D. Li, L.J. Zhi, A synergistic strategy for stable lithium metal anodes using 3D fluorine-doped graphene shuttle-implanted porous carbon networks, Nano Energy 49 (2018) 179-185.

DOI: 10.1016/j.nanoen.2018.04.040

Google Scholar

[8] G.Y. Zheng, S.W. Lee, Z. Liang, H.-W. Lee, K. Yan, H.B. Yao, H.T. Wang, W.Y. Li, S. Chu, Y. Cui, Interconnected hollow carbon nanospheres for stable lithium metal anodes, Nat. nanotech. 9 (2014) 618-623.

DOI: 10.1038/nnano.2014.152

Google Scholar

[9] C.-Z. Zhao, H. Duan, J.-Q. Huang, J. Zhang, Q. Zhang, Y.-G. Guo, L.-J. Wan, Designing solid-state interfaces on lithium-metal anodes: a review, Sci. China Chem. 62 (2019) 1286-1299.

DOI: 10.1007/s11426-019-9519-9

Google Scholar

[10] Y. Xu, T. Li, L. Wang, Y. Kang, Interlayered dendrite-free lithium plating for high-performance lithium-metal batteries, Adv. mater. 31 (2019) e1901662.

DOI: 10.1002/adma.201901662

Google Scholar

[11] W.W. Wang, X.Y. Yue, J.K. Meng, J.Y. Wang, X.X. Wang, H. Chen, D.R. Shi, J. Fu, Y.N. Zhou, J. Chen, Z.W. Fu, Lithium phosphorus oxynitride as an efficient protective layer on lithium metal anodes for advanced lithium-sulfur batteries, Energy Storage Mater. 18 (2019) 414-422.

DOI: 10.1016/j.ensm.2018.08.010

Google Scholar

[12] H.S. Wang, Y.Y. Liu, Y.Z. Li, Y. Cui, Lithium metal anode materials design: interphase and host, Electrochem. Energy Rev. 2 (2019) 509-517.

DOI: 10.1007/s41918-019-00054-2

Google Scholar

[13] Y. Li, Y. Sun, A. Pei, K. Chen, A. Vailionis, Y. Li, G. Zheng, J. Sun, Y. Cui, Robust pinhole-free Li3N solid electrolyte grown from molten lithium, ACS Central Sci. 4 (2018) 97-104.

DOI: 10.1021/acscentsci.7b00480

Google Scholar

[14] G.A. Umeda, E. Menke, M. Richard, K.L. Stamm, F. Wudl, B. Dunn, Protection of lithium metal surfaces using tetraethoxysilane, J. Mater. Chem. 21 (2011) 1593-1599.

DOI: 10.1039/c0jm02305a

Google Scholar

[15] J.G. Zhu, P.K. Li, X. Chen, D. Legut, Y.C. Fan, R.F. Zhang, Y.Y. Lu, X.B. Cheng, Q.F. Zhang, Rational design of graphitic-inorganic bi-layer artificial SEI for stable lithium metal anode, Energy Storage Mater. 16 (2019) 426-433.

DOI: 10.1016/j.ensm.2018.06.023

Google Scholar

[16] D. Zhang, S. Wang, B. Li, Y. Gong, S. Yang, Horizontal growth of lithium on parallelly aligned MXene layers towards dendrite-free metallic lithium anodes, Adv. Mater. 31 (2019) e1901820.

DOI: 10.1002/adma.201901820

Google Scholar

[17] W. Lu, L.Q. Sun, Y. Zhao, T. Wu, L. Cong, J. Liu, Y.L. Liu, H.M. Xie, Elongating the cycle life of lithium metal batteries in carbonate electrolyte with gradient solid electrolyte interphase layer, Energy Storage Mater. 34 (2021) 241-249.

DOI: 10.1016/j.ensm.2020.09.017

Google Scholar

[18] S.D. Ware, C.J. Hansen, J.P. Jones, J. Hennessy, R.V. Bugga, K.A. See, Fluoride in the SEI stabilizes the Li metal interface in Li-S batteries with solvate electrolytes, ACS Appl. Mater. Inter. 13 (2021) 18865-18875.

DOI: 10.1021/acsami.1c02629

Google Scholar

[19] M. Alhabeb, K. Maleski, B. Anasori, P. Lelyukh, L. Clark, S. Sin, Y. Gogotsi, Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene), Chem. Mater. 29 (2017) 7633-7644.

DOI: 10.1021/acs.chemmater.7b02847

Google Scholar

[20] l.x. liu, w. chen, h.b. zhang, q.w. wang, f.l. guan, z.z. yu, flexible and multifunctional silk textiles with biomimetic leaf-like MXene/silver nanowire nanostructures for electromagnetic interference shielding, humidity monitoring, and self-derived hydrophobicity, Adv. Funct. Mater. 29 (2019) 1905197.

DOI: 10.1002/adfm.201905197

Google Scholar

[21] Y. Wang, Z. Wang, L. Zhao, Q. Fan, X. Zeng, S. Liu, W.K. Pang, Y.B. He, Z. Guo, Lithium metal electrode with increased air stability and robust solid electrolyte interphase realized by silane coupling agent modification, Adv. Mater. 33 (2021) e2008133.

DOI: 10.1002/adma.202008133

Google Scholar

[22] X.W. Shen, Y.T. Li, T. Qian, J. Liu, J.Q. Zhou, C.L. Yan, J.B. Goodenough, Lithium anode stable in air for low-cost fabrication of a dendrite-free lithium battery, Nat. Comm. 10 (2019) 900.

DOI: 10.1038/s41467-019-08767-0

Google Scholar

[23] Y.Z. Yao, X.H. Zhao, A.A. Razzaq, Y.T. Gu, X.T. Yuan, R. Shah, Y.B. Lian, J.X. Lei, Q.Q. Mu, Y. Ma, Y. Peng, Z. Deng, Z.F. Liu, Mosaic rGO layers on lithium metal anodes for the effective mediation of lithium plating and stripping, J. Mater. Chem. A 7 (2019) 12214-12224.

DOI: 10.1039/c9ta03679b

Google Scholar