Textured YBaCuO Films Enhanced by Cold Rolling and Melt Growth Process in Low Oxygen Partial Pressure

Article Preview

Abstract:

High critical current density Jc under high magnetic field is required in numerous applications for high temperature superconductor YBa2Cu3O7-δ (Y123). Significant efforts have been made to control sample preparation in view of optimized textures and microstructures. In YBa2Cu3O7-δ superconductor, Jc is limited by grain misalignment and by other defaults like secondary phase (Y211), microcracks... So YBaCuO films were prepared by electrophoretic deposition directly on polycrystalline Ag substrate. Melt textured growth (MTG) in low oxygen partial pressure and cold rolling were performed to YBaCuO samples respectively to improve texture growth of the films and to study deformation effect on the texture. The film obtained by melted growth after rolling has better texture orientation than the film without rolling, and presents higher critical current density.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 105)

Pages:

453-458

Citation:

Online since:

July 2005

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E. Georgiopoulos and A. Tsetsekou, J. Europ. Ceram. Soc., 20, 16, (2000) 2779.

Google Scholar

[2] S. Piñol, M. Najib, T. Puig, X. Obradors, H. Xuriguera and M. Segarra, Physica C 372-376, 2 (2002) 738.

DOI: 10.1016/s0921-4534(02)00895-x

Google Scholar

[3] H. Yao, B. Zhao, K. Shi, Z. Han, Y. Xu, D. Shi, S. Wang, L. M. Wang, Ch. Peroz and C. Villard, Physica C 392-396, 2 (2003) 941.

DOI: 10.1016/s0921-4534(03)00780-9

Google Scholar

[4] M. Hein, G. Müller, H. Piel, L. Ponto, M. Becks, U. Klein and M. Peiniger, J. Appl. Phys. 66 (1989) 5940.

Google Scholar

[5] R. Eggenhöffner, A. Tuccio, R. Masini, A. Diaspro, S. Leporatti, and R. Rolandi, Supercond. Sci. Technol. 10 (1997) 142.

DOI: 10.1088/0953-2048/10/3/004

Google Scholar

[6] S. Ondoño-Castillo and N. Casañ-Pastor, Physica C 268 (1996) 317.

Google Scholar

[7] L. D. Woolf, W. A. Raggio, F. E. Elsner, M. V. Fisher, R. B. Stephens, T. L. Figueroa, C. H. Shearer, J. D. Rose, K. M. Schaubel, R. A. Olstad, T. Ohkawa, D. M. Duggan, M. DiMartino, and R. L. Fagaly, Appl. Lett. 58 (1991) 534.

DOI: 10.1063/1.104578

Google Scholar

[8] D. Bhattacharya, S. N. Roy, R. N. Basu, A. Das Sharma and H. S. Maiti, Mater Lett. 16 (1993) 337.

Google Scholar

[9] D. Chateigner, P. Germi, M. Pernet, J. Bouthegourd, F. Grivon and E. Fries, Physica C 235-240, 1 (1994) 453.

DOI: 10.1016/0921-4534(94)91450-8

Google Scholar

[10] R. Wang, Y. Zhou, S. Pan, M. He, Z. Chen, G. Yang, Physica C 328 (1999) 37.

Google Scholar

[11] Y. Zhao and C. H. Cheng, Physica C 386 (2003) 286.

Google Scholar

[12] G. Hammeri, A. Schmehl, R. R. Schulz, B. Goetz, H. Bielefeldt, C. W. Schbeider, H. Hilgenkamp and J. Mannhart, Nature 407 (2000) 162.

Google Scholar

[13] X. M. Xiong, Y. L. Zhou, H. B. Lu, Z. H. Chen and G. Z. Yang, Physica C 298 (1998) 178.

Google Scholar

[14] B. Ma, R. E. Koritala, B. L. Fischer, K. K. Uprety, R. Baurceanu, S.E. Dorris, D. J. Miller, P. Berghuis, K. E. Gray and U. Balachandran, Physica C 403 (2004) 183.

DOI: 10.1016/j.physc.2003.11.018

Google Scholar

[15] Y. B. Zhu, Y. L. Zhou, Z. Liu, S.F. Wang, Z. H. Chen, H. B. Lu, G. Z. Yang, L. Xiao, H. T. Ren, Y. L. Jiao and M. H. Zheng, Physica C 403 (2004) 172.

Google Scholar

[16] Y. Ma, K. Watanabe, S. Awaji and M. Motokawa, Cryogenics 42, 6-7 (2002) 383.

Google Scholar

[17] D. Soh, Y. Shan, J. Park, Y. Li and Y. Cho, Physica C 337, 1-4 (2000) 44.

Google Scholar

[18] Z. Fan, W. Gao, F. Li, J. Wang and D. Soh, Physica C 386 (2003) 241.

Google Scholar

[19] G. Grasso, A. Perin and R. Flükiger, Physica C 250, 1-2 (1995) 43.

Google Scholar

[20] P. Diko, N. pelerin and P. Odier, Physica C 247 (1995) 169.

Google Scholar

[21] D. Shi, P. Odier, A. Sulpice, D. Isfort, X. Chaud, R. Tournier, P. He and R. Singh Physica C 384 (2003) 149.

DOI: 10.1016/s0921-4534(02)01796-3

Google Scholar

[22] M. Ochsenkühn-Petropoulou, R. Argyropoulou, P. Tarantilis, I. Vottea, K. M. Ochsenkühn and G. Parissakis, J. Mat. Proc. Tech. 108 (2001) 179.

DOI: 10.1016/s0924-0136(00)00749-4

Google Scholar

[23] D. Isfort, X. Chaud, R. Tournier and G. Kapelski, Physica C 390 (2003) 341.

Google Scholar

[24] D. Shi, D. Isfort, X. Chaud, P. Odier, D. Mast and R. Tournier, Physica C 402 (2004) 72.

Google Scholar

[25] N. Sato, M. Kawachi, K. Noto, N. Yoshimoto and M. Yoshizawa, Physica C 357-360, 2 (2001) 1019.

Google Scholar

[26] J.L. MacManus-Driscoll, Annu. Rev. Mater. Sci. 28 (1998) 421.

Google Scholar

[27] S. Piñol, T. Puig, B. Martinez, X. Obradors and J.M. Ximenos, IEEE Trans. Appl. Supercond. 9, 2 (1999) 1483.

Google Scholar

[28] H. L. Suo, J. Y. Genoud, M. Schindl, E. Walter, T. Tybell, F. Cléton, M. Zhou and R. Flükiger, Supercond. Sci. Technol. 13 (2000) 912.

DOI: 10.1088/0953-2048/13/7/302

Google Scholar