Microstructure and Mechanical Properties of Spark Plasma Sintered ZrO2-Al2O3-TiC0.5N0.5 Nanocomposites

Article Preview

Abstract:

Future materials for wear resistant components require a combination of excellent mechanical properties such as hardness and toughness, short processing times and good electrical conductivity to facilitate shaping by electro discharge machining (EDM). In this work, the hardness and fracture toughness of t-ZrO2 based electro conductive composites was optimised, while short processing times below 20 minutes using spark plasma sintering were sufficient to obtain near fully dense materials. The influence of powder processing technique using TiC0.5N0.5 as the starting powder and yttria as a stabiliser on the mechanical properties of ZrO2-TiC0.5N0.5-Al2O3 based composites was investigated. Fully dense Y-TZP based composites possessed an excellent toughness of 9.2 MPa.m1/2 and an increased Vickers hardness of 1397 kg/mm².

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 106)

Pages:

153-160

Citation:

Online since:

September 2005

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Telle, R., S. Meyer, G. Petzow and E.D. Franz (1988). Mater. Sci. Eng., A A105/106: 125-129.

Google Scholar

[2] Telle, R. and G. Petzow (1988). Mater. Sci. Eng., A A105/106: 97-104.

Google Scholar

[3] Watanabe, T. and H. Shoubu (1985). J. Am. Ceram. Soc. 68.

Google Scholar

[2] C-34-C-36.

Google Scholar

[4] Torizuka, S., J. Harada and H. Nishio (1990). Ceram. Eng. Sci. Proc. 11 [9-10]: 1454-1460.

Google Scholar

[5] Gross, V., J. Haylock and M.V. Swain (1988). Mater. Sci. Forum: 555-559.

Google Scholar

[6] Barbier, E. and F. Thevenot (1991). J. Eur. Ceram. Soc. 8: 263-269.

Google Scholar

[7] Shoubu, K., T. Watanabe, J. Drennan, R.H. J Hannink and M.V. Swain: Advances in Ceramics (American Ceramic Society, Columbus, OH, 1986).

Google Scholar

[8] Vleugels, J. and O. Van der Biest (1999). J. Am. Ceram. Soc. 82.

Google Scholar

[10] 2717: 2720.

Google Scholar

[9] Anné, G., S. Put, K. Vanmeensel, D. Jiang, J. Vleugels and O. Van der Biest (2005). J. Eur. Ceram. Soc. 25(1): 55-63. 0 0. 5 1 1. 5 2 2. 5 25-m 25-c 20-m 20-c 25-m 25-c 20-m 20-c Porosity (%) micron TiCN nano TiCN.

DOI: 10.1016/j.jeurceramsoc.2004.01.015

Google Scholar

[10] Basu B., T. Venkateswaran and D. Sarkar. J. Eur. Ceram. Soc., in press.

Google Scholar

[11] Perera, D. S., M. Tokita and S. Moricca (1998). J. Eur. Ceram. Soc. 18(4): 401-404.

Google Scholar

[12] Shen, Z., M. Johnsson, Z. Zhao and M. Nygren (2002). J. Am. Ceram. Soc. 85.

Google Scholar

[8] 1921-(1927).

Google Scholar

[13] Jayaseelan, D. D, S. Ueno, T. Ohji and S. Kanzaki (2004). J. Am. Ceram. Soc. 87.

Google Scholar

[1] 159-161.

Google Scholar

[14] Hong, J., L. Gao, S.D.D. La Torre, H. Miyamoto and K. Miyamoto (2000). Materials Letters 43: 27-31.

Google Scholar

[15] Komeda, T., M. Yoshinaka, K. Hirota and O. Yamaguchi (1998). J. Am. Ceram. Soc. 81.

Google Scholar

[9] 2497-2500.

Google Scholar

[16] Yuan, Z.X., J. Vleugels and O. Van der Biest (2000). J. Mat. Sci. Letters 19: 359-361.

Google Scholar

[17] Anstis, G.R., P. Chantukil, B.R. Lawn and D.B. Marshall (1981). J. Am. Ceram. Soc. 64.

Google Scholar

[6] 533-558.

Google Scholar

[18] ASTM Annual Book of Standards (American Ceramic Society for Testing of Materials, Philadelphia, PA, 1994).

Google Scholar

[19] Basu, B., J. Vleugels and O . Van der Biest (2004). Mat. Sci. Eng. A366: 338-347.

Google Scholar

[20] K.U. Leuven, department MTM, unpublished results.

Google Scholar