Structure-Property Relations in xCuO-(1-x)As2O3-0.7B2O3 (0.01≤x≤0.05) Glasses by Magnetic Susceptibility Measurements, IR and EPR Spectroscopy

Article Preview

Abstract:

Studies on xCuO-(1-x)As2O3-0.7B2O3(0.01≤x≤0.05) (G1-G5: x = 0.01, 0.02, 0.03, 0.04, 0.05) glasses were done using varieties of structure sensitive techniques. The powder X-ray diffraction (XRD) studies show the formation of glasses in the composition. The IR spectral results show the presence of Cu-O bond, planar [BO3/2] and [BO3 -n](n=1, 2, 3) units and tetrahedral {BO4/2]- units. The magnetic susceptibility results show Curie-Weiss behaviour in the range 4.2-400 K. The calculated values of the exchange integral from the Weiss constant obtained form the linear fit of the Curie-Weiss law are found to be in the range 5.22-29.50 meV. From the trend of the gmatrices of gơ>g⊥>ge (ge =2.0023) obtained from electron paramagnetic resonance (EPR) lineshapes simulation we conclude that the paramagnetic site in these glasses is Cu2+(3d9) which is in a tetragonally elongated octahedron [O1/2-CuO4/2-O1/2] exhibiting Jahn-Teller distortion having D4h symmetry with orbital singlet 3dx2-y2 (2B1g) as the ground state.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 111)

Pages:

103-106

Citation:

Online since:

April 2006

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Duran, J.R. Jurado and J.M. F. Navarro:J. Non-Cryst. Solids Vol. 79 (1986), p.333.

Google Scholar

[2] S. Hazra and A. Ghosh: Phys. Rev Vol. B51 (1995), p.2.

Google Scholar

[3] A. Murali and J. L Rao: J. Phys.: Condens Matter Vol. 11 (1999), p.7921.

Google Scholar

[4] D. Sreenivasu and V. Chandramouli: Bull. Mater. Sci: Vol. 23 (2000), p.509.

Google Scholar

[5] R.P.S. Chakradhar, K.P. Ramesh, J. L. Rao and J. Ramakrishna: J. Phys: Condens. Matter Vol. 15 (2003), p.1469.

Google Scholar

[6] A.J. Bosman and H.J. Van Daal: Adv. Phys. Vol. 19 (1970), p.1.

Google Scholar

[7] R.A. Smith: J. Non-Cryst Solids Vol. 84 (1986), p.421.

Google Scholar

[8] E.I. Kamitsos, M.A. Karakassides and G.D. Chryssikos: Phys. Chem. Glasses Vol. 30 (1989), p.229.

Google Scholar

[9] B.B. Das: Ph. D. Thesis (Indian Institute of Technology Kanpur 1987).

Google Scholar

[10] D. Kumar and D. Chakravorty: J Phys D: Appl. Phys. Vol. 15 (1982), p.305.

Google Scholar

[11] K. Nakamato: Infrared and Raman Spectra of Inorganic and Coordination Compounds (John Wiley, New York 1986), p.104.

Google Scholar

[12] Ref. 11, p.123.

Google Scholar

[13] Ref. 11, p.476.

Google Scholar

[14] Y. Y. Kim, K. H. Kim and J. S. Choi:J. Phys. Chem. Glasses Vol. 50 (1989), p.903.

Google Scholar

[15] V.A. Kolesova: Fizika i Khimiya Stekla Vol. 12 (1986), p.1.

Google Scholar

[16] [ C. P. Poole, Jr.: Elecrtron Spin Resonance (Interscience, New York 1967) p.20.

Google Scholar

[17] K. J. Rao and B. G. Rao: Proc. Ind. Acad. Sci. (Chem. Sci. ) Vol. 95 (1985), p.69.

Google Scholar

[18] S. K. Sur, Ph. D. Dissertation (Indian Institute of Technology Kanpur 1982).

Google Scholar

[19] D. Kivelson and S. K. Lee: J. Chem. Phys. Vol. 41 (1964), p.1892.

Google Scholar

[20] A. Abragam and J. Horowitz: Proc. Roy. Soc., London Vol. A230 (1955), p.169.

Google Scholar

[21] J. Owen: Proc. Roy. Soc. London Vol. A227 (1955), p.183.

Google Scholar

[22] H. A. Jahn and E. Teller: Proc. Roy. Soc. Vol. A161 (1937), p.220.

Google Scholar