The Role of Plastic Deformation in the Process of Powder Sintering

Article Preview

Abstract:

It is generally supposed that diffusion is the main factor controlling the process of powder sintering. In this work it is shown that plastic deformation achieved by means of dislocation movement is also an important constituent of the sintering process. Since temperature essentially affects dislocation mobility, the temperature ranges of cold, warm and hot deformation are discussed. The stresses occurring on powder sintering leading to plastic deformation of the material are estimated. On the base of results recommendations are made for selecting the optimal condition for the sintering of powders.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 114)

Pages:

199-210

Citation:

Online since:

July 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. J. McQueen, The production and utility of recovered dislocation substructures, Metal. Trans., 8A, No. 6, 807-824 (1977).

DOI: 10.1007/bf02661562

Google Scholar

[2] M. L. Bernshtein, Structure of Deformed Crystals, [in Russian], Metallurgiya, Moscow (1977).

Google Scholar

[3] V. I. Trefilov, Yu. V. Mil'man, and S. A. Firstov, Physical Fundamentals of the Strength of Refractory Metals [in Russian], Naukova Dumka, Kiev (1975).

Google Scholar

[4] Yu. V. Mil'man, Structural aspects of warm and cold deformation of crystalline materials, Metalloved. Term. Obrab. Met., No. 6, 2-6 (1985).

Google Scholar

[5] V. I. Trefilov, Yu. V. Milman, and I. V. Gridneva, Characteristic temperature of deformation of crystalline materials, Cryst. Res. Technol., 19, No. 3, 413-421 (1984).

DOI: 10.1002/crat.2170190321

Google Scholar

[6] I. V. Gridneva, E. R. Dobrovinskaya, D. V. Lotsko, et al., Mobility of dislocations in a corundum single crystal, Izv. Akad. Nauk SSSR, Ser. Neorg. Mater., No. 10, 2134-2138 (1991).

Google Scholar

[7] A. N. Vergazov, V. A. Likhachev, and V. V. Rybin, Examination of the fragmented structures formed in molybdenum in active plastic deformation, Fiz. Met. Metalloved., 42, No. 6, 1241-246 (1976).

Google Scholar

[8] V. I. Trefilov, Yu. V. Mil'man, R. K. Ivashshenko, et al., Structure, Texture, and Mechanical Properties of Deformed Molybdenum Alloys [in Russian], Naukova Dumka, Kiev (1983).

Google Scholar

[9] I. F. Kazo, I. V. Gridneva, Yu. V. Mil'man, and V. I. Trefilov, Effect of structural parameters on deformation and failure of covalent crystals, Metallofizika, 2, No. 5, 56-64 (1980).

Google Scholar

[10] Yu. V. Mil'man, I. V. Gridneva, V. A. Goncharuk, et al., Effect of temperature on the failure mechanisms and mechanical properties of semiconductor compounds of the type AII B VI , Fiz. Khim. Obrab. Mater., No. 2, 128-133(1988).

Google Scholar

[11] R. A. Andrievsky, On the temperature dependence of densification in sintering, Sci. Sinter., 16, No. 1, 3-6 (1984).

Google Scholar

[12] V. I. Trefilov, Yu. V. Mil'man, and I. V. Gridneva, Mechanical properties of covalent crystals, Izv. Akad Nauk SSR, Ser. Neorg. Mater., 20, No. 6, 958-966 (1984).

Google Scholar

[13] V. I. Trefilov and Yu. V. Mil'man, Physical nature of the temperature dependence of the yield limit, in: Fracture Mechanisms of Metals [in Russian], Naukova Dumka, Kiev (1966), pp.59-76.

Google Scholar

[14] M. F. Ashby, A first report of deformation-mechanism maps, Acta Met., 20, No. 7, 887902 (1972).

Google Scholar

[15] F. R. Nabarro, Deformation of crystals by die motion of single ions, in: Reports of a Conference on Strength of Solids (Bristol 7-9 July 1947), The Physical Soc. of London, Cambridge, (1948), pp.75-90.

Google Scholar

[16] C. Hering, Diffusional viscosity of a polycrystalline solid, J. Appl. Phys, 21, No. 5, 437445 (1950).

Google Scholar

[17] I. M. Lifshits, Theory of dynamic-viscose yielding of polycrystalline solids, Zh Eksp. Teor. Fiz., 44, 1349-1357 (1963).

Google Scholar

[18] R. L. Coble, A model for boundary diffusion controlled creep in polycrystalline materials, J. Appl. Phys., 34, 1679 (1963).

Google Scholar

[19] M. F. Ashby and R. A. Verrall, Diffusion-accommodated flow and superplasticity, Acta. Met., 21, No. 2, 149-158 (1973).

DOI: 10.1016/0001-6160(73)90057-6

Google Scholar

[20] Ya. E. Geguzin, Physics of Sintering [in Russian], Nauka, Moscow (1984).

Google Scholar

[21] Ya. E. Geguzin, A. S. Dzyuba, and V. P. Matsokin, Dislocation structures formed in the contact zone of two single crystals, Ukr. Fiz. Zh., 29, No. 9, 1419-1422 (1984).

Google Scholar

[22] Ya. E. Geguzin, A. K. Emets, V. G. Kononenko, and D. V. Pluzhnikova, Dislocation mechanism of high-temperature deformation of elements of the roughness of compressed real surfaces, Poroshk. Metall., No. 6, 35-42 (1982).

DOI: 10.1007/bf00801754

Google Scholar

[23] W. Schatt, Untersudningen an kupfer-einkristall sintermodellen, Kristall und Technik, 10, No. 9, 845-854 (1975).

DOI: 10.1002/crat.19750100808

Google Scholar

[24] W. Schatt and E. Friedrich, Versetzungsbildung wahrend des sinterns, Planseeberichte fur Pulvermetallurgie, 23, No. 3, 145-156 (1977).

Google Scholar

[25] S. Erdmann-Jesnitzer and F. Günther, Gesetzmässigkeiten bei verwachsungsvorgängen von kristallen. II. Ront-egenographische untersuchungen an verklebten steinsalzkristallen, Z. Metallkunde, 46, No. 12, 801-809 (1955).

DOI: 10.1515/ijmr-1955-461105

Google Scholar

[26] Yu. I. Boiko and R. B. Lakhterman, Stresses formed in diffusion sintering sets of real powder particles, Poroshk. Metall., No. 8, 31-34 (1976).

Google Scholar

[27] W. Schatt and E. Friedrich, Dislocation-activated sintering processes, in: Sintering-85, Plenum Press, New York, London, (1987), pp.133-141.

DOI: 10.1007/978-1-4613-2851-3_13

Google Scholar

[28] Μ. Ρ. Poire, High-Temperature Plasticity of Crystalline Solids [Russian translation], Metallurgiya, Moscow (1982).

Google Scholar

[29] F. Garofalo, Laws of Creep and Long-Term Strengths of Metals [Russian translation], Metallurgiya, Moscow (1968).

Google Scholar

[30] I. Weertman, Steady-state creep of crystals, J. Appl. Phys., 28, No. 10, 1185-1189 (1957).

DOI: 10.1063/1.1722604

Google Scholar

[31] G. C. Kuczynski, Study of sintering of glass, J. Appl. Phys., 20, 1160-1169 (1949).

Google Scholar

[32] N. E. Exner, Principles of Single Phase Sintering, Frend Publ. House, Tel Aviv (1979).

Google Scholar

[33] I. P. Arsentyeva and Μ. Μ. Ristic, Dislocation structure of nickel powder and its role in the sintering process, in: Sintering 85, Plenum Press, New York-London, (1987), p.5965.

DOI: 10.1007/978-1-4613-2851-3_6

Google Scholar

[34] K. A. Christiansen and A. R. Tholen, Twin formation during sintering of micron and submicron sized copperparticles, in: Sintering 85, Plenum Press, New York-London, (1987), pp.69-79.

DOI: 10.1007/978-1-4613-2851-3_7

Google Scholar

[35] I. P. Arsentyeva, M. M. Ristic, Dislocation structure of nickel powder and its role in the sintering process, in: Sintering 85, Plenum Press, New York-London, (1987), pp.59-65.

DOI: 10.1007/978-1-4613-2851-3_6

Google Scholar

[36] M.M. Ristic, V.I. Trefilov, Yu.V. Milman et al. The structure and properties of sintered materials. Serbian academy of science and art. Monographs. Belgrad, 1992, Vol. DCXV, Iss. 35, 261p.

Google Scholar