Nanocrystalline NiAl-TiC Composites Sintered by the Pulse Plasma Method

Article Preview

Abstract:

The paper presents the results of the examination of nanocrystalline NiAl-TiC composites with 25 wt.% and 40 wt.% of TiC. The starting materials were coarse-grained powders which were subjected to mechanical refining to obtain a nano-crystalline grain size. These powders were then sintered using the pulse plasma method. After sintering the NiAl-TiC composites have a density of 99.9% of the theoretical value. The grain size, determined by X-ray diffraction using the Hall-Williamson method; density; hardness and fracture toughness of the composites were investigated. The results obtained showed that the pulse plasma sintered NiAl-TiC have a density very close to the theoretical value and that the nano-crystalline microstructure was maintained. The NiAl-TiC composites containing 25wt.% of TiC have a hardness of 750 HV1 and a stress intensity factor KIC of 7 MPa⋅m1/2, whereas those containing 40 wt.% of TiC have a hardness of 1070 HV1 and KIC of 11.8 MPa⋅m1/2.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 114)

Pages:

233-238

Citation:

Online since:

July 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G.H. Gao, Z.G. Liu, G.J. Shen, J. M. Liu, Intermetallics, , 9(2001) 691.

Google Scholar

[2] A. Kitaoka, K. Hirota, M. Yoshinaka, Y. Miyamoto, O. Yamaguchi, J. Am. Ceram. Soc., 83(2000) 1311.

Google Scholar

[3] L.Z. Zhou, J.T. Gao, Scripta Materials, 2(1999) 139.

Google Scholar

[4] S. Donga, P. Houb, H. Yanga, G. Zoua, Intermetallics", 10(2002) 217.

Google Scholar

[5] D.T. Jiang, J.T. Guo, Materials Letters, 36(1998) 33.

Google Scholar

[6] C. Curfsa, I.G. Canob, G.B.M. Vaughana, X. Turrillasc, A. Kvicka, M.A. Rodri, Journal of the European Ceramic Society, 22(2002) 1039.

Google Scholar

[7] L. Gao, H.Z. Wang, J.S. Hong, Miyamoto, Y. Nishikawa, S. DD.L. Torre, J. Eur. Ceram. Soc. 609 (1999) 19.

Google Scholar

[8] S. H. Risbud, Ch. H. Shan, Mater. i. Eng. A204 (1995) 1461.

Google Scholar

[9] J. R. Groza , A. Zavaliangos, Mater. Sci. Eng. A287 (2000) 171.

Google Scholar

[10] A. Michalski, J. Jaroszewicz, M. Rosiński, Int. J. of SHS. Vol 12 3 (2003), 237.

Google Scholar

[11] Williamson GK, Hall WH. Acta Metall 1953; 1: 22.

Google Scholar

[12] G. S. Anstis, P. Chantikul, B.R. Lawan, D.B. Marshall, J. Am. Ceram. Soc., 64 (1981) 533.

Google Scholar

[13] L. Farber I. Gotman, E.Y. Gutmans, A. Lawley, Mater. Sci. Eng., A244 (1998) 97.

Google Scholar

[14] H. Garbacz, M. Lewandowska, J. Siejka, K.J. Kurzydłowski, InŜynieria Materiałowa, 15-136 (2003) 164.

Google Scholar