Phase Transition and Thermoelectric Property of Ultra-Fine Structured β-FeSi2 Compounds

Abstract:

Article Preview

FeSi2 compounds were fabricated by rapid solidification and hot pressing, which is considered to be a mass production technique for this alloy. Structural behavior of melt-spun ribbon during heat-treatment and Seebeck coefficient of the hot pressed bulk were systemically investigated and compared with conventionally fabricated alloys. The melt-spun ribbon consists of α-Fe2Si5 and ε-FeSi phase. With increasing annealing time, the phase transition to β-FeSi2 phase occurred more rapidly. 20 min of annealing is sufficient for a homogeneous formation of β-FeSi2 phase in melt-spun ribbon, while it is 100 h in as-cast alloy. In this research, the formation mechanism of β-FeSi2 phase during annealing is a transition of α+ε→β. The microstructure of sintered bulk generally consist of a randomly distributed β-FeSi2 phase with an average grain size of 0.9 μm. The increase of Seebeck coefficient in melt-spun and sintered specimen is due to fine grain size formed by rapid solidification.

Info:

Periodical:

Solid State Phenomena (Volume 118)

Edited by:

Jang Hyun Sung, Chan Gyu Lee, Yong Zoo You, Young Kook Lee and Jae Young Kim

Pages:

591-596

DOI:

10.4028/www.scientific.net/SSP.118.591

Citation:

S. J. Hong et al., "Phase Transition and Thermoelectric Property of Ultra-Fine Structured β-FeSi2 Compounds ", Solid State Phenomena, Vol. 118, pp. 591-596, 2006

Online since:

December 2006

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.