Surface-Area-Difference Model for Melting Temperature of Metallic Nanocrystals Embedded in a Matrix

Article Preview

Abstract:

The cohesive energy is the energy to divide the crystal into isolated atoms, and the direct result of cohesive energy is to create new surface. The increased surface energy should equal the cohesive energy of the crystal, which results from the surface area difference between the total atoms and the crystal. This is the basic concept of Surface-Area-Difference (SAD) model. The SAD model has been extended to account for the melting temperature of metallic nanocrystals with non-free surface (embedded in a matrix) in the present work. It is shown if the melting temperature of the matrix must be much higher than that of the bulk value of the nanocrystals, and the nanocrystals has coherent or semi-coherent interface with the matrix, the nanocrystals may be superheated. The present results are supported by the available experimental values.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 121-123)

Pages:

1181-1188

Citation:

Online since:

March 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. J. Takagi , Phys. Soc. Japan 9(1954)359.

Google Scholar

[2] M. Hasegawa, K. Hoshino, M. Watabe , J. Phys. F 10(1980) 619.

Google Scholar

[3] F.G. Shi, J. Mater. Res. 9(1994)1307.

Google Scholar

[4] A.N. Goldstein, C.M. Ether, A.P. Alivisatos, Science 256(1992)1425.

Google Scholar

[5] C.L. Jackson, G.B. McKenna. Chem. Mater. 8(1996) 2128.

Google Scholar

[6] S. L . Lai, J.Y. Guo, V. Petrova , et al . Phys. Rev. Lett. 77(1996)99.

Google Scholar

[7] K.K. Nanda, S.N. Sahu and S.N. Behera, Phys. Rev. A 66(2002)13208.

Google Scholar

[8] Q. Jiang, N. Aye and F.G. Shi, Appl. Phys. A 63(1997)627.

Google Scholar

[9] H. Saka, Y. Nishikawa and T. Imura, Phil. Mag. A 57(1988)895.

Google Scholar

[10] J.H. Rose, J. Ferrante and J.R. Smith, Phys. Rev. Lett. 47(1981)675.

Google Scholar

[11] J.H. Rose, J. Ferrante and J.R. Smith, Phys. Rev. B 25(1982)1419.

Google Scholar

[12] W.H. Qi, M.P. Wang, J. Mater. Sci. Lett. 21(2002)1743.

Google Scholar

[13] C.Q. Sun, Physics Reports (invited), 2005 (to be published).

Google Scholar

[14] A.R. Miedema, Z. Metallkd 69(1978)287.

Google Scholar

[15] C. Kittel, Introduction to Solid State Physics, 7th edition, New York : Wiley, (1996).

Google Scholar

[16] C.S. Barrett, T.B. Massalski, , Structure of Metals, 3rd revised Ed., Pergamon Press, 1980, p.626.

Google Scholar

[17] R. Lamber, S. Wetjen, I. Jaeger. , Phys. Rev. B 51(1995)10968.

Google Scholar

[18] W.H. Qi, M.P. Wang , Y.C. Su., J. Mater. Sci. Lett. 21(2002)877.

Google Scholar

[19] S. Link , C. Burd, B. Nikoobakht, et al. J. Phys. Chem. B 104(2000)612.

Google Scholar

[20] A.V. Simakin, V.V. Voronov, G.A. Shafeev et al. Chem. Phys. Lett. 348(2001).

Google Scholar

[7] and the symbols ■, denote the experimental values are the experimental results.

Google Scholar