Defect Engineering in Self-Assembled 3D Photonic Crystals

Article Preview

Abstract:

This work describes the combination of photolithography and self-assembly methods for fabrication of 3D photonic crystals (PCs) with well-defined micron-scale line defects embedded in the PCs. Line defects with different dimensions, shapes, and compositions have been introduced into the 3D PCs by choosing different photoresists, masks, and template-directed assembly techniques. Infiltration of carbon using high-temperature chemical vapor deposition (CVD) technique showed that the fabrication procedure offers an ideal approach to functional 3D photonic devices from self-assembled photonic crystals.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 121-123)

Pages:

377-380

Citation:

Online since:

March 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E. Yablonovitch: Phys. Rev. Lett. 58 (1987), p. (2059).

Google Scholar

[2] S. John: Phys. Rev. Lett. 58 (1987), p.2486.

Google Scholar

[3] J. D. Joannopoulos, R. D. Meade and J. N. Winn: Photonic Crystals: Molding the Flow of Light, 1 st ed. (Princeton University Press, Princeton, NJ 1995).

Google Scholar

[4] Q. Yan, Z. Zhou and X. S. Zhao: Langmuir 21 (2005), p.3158.

Google Scholar

[5] S. H. Park and Y. Xia: Langmuir 15 (1999), p.266.

Google Scholar

[6] Z. Zhou and X. S. Zhao: Langmuir 20 (2004), p.1524.

Google Scholar

[7] P. Jiang, J. F. Bertone, K. S. Hwang and V. L. Colvin: Chem. Mater. 11 (1999), p.2132.

Google Scholar

[8] S. Wong, V. Kitaev and G. A. Ozin: J. Am. Chem. Soc. 125 (2003), p.15589.

Google Scholar

[9] A. A. Chabanov, Y. Jun, D. J. Norris: Appl. Phys. Lett. 84 (2004), p.3573.

Google Scholar

[10] E. P. -Lidón, J. F. G. -López, B. H. Juárez and C. López: Adv. Mater. 16 (2004), p.341.

Google Scholar

[11] N. Tétreault, A. Mihi, H. Míguez, I. Rodríguez and G. A. Ozin: Adv. Mater. 16 (2004), p.346.

Google Scholar

[12] R. D. Pradhan, Đ. Đ. Tarhan and G. H. Watson: Phys. Rev. B 54 (1996), p.13721.

Google Scholar

[13] W. Lee, A. Pruzinsky and P. V. Braun: Adv. Mater. 14 (2002), p.271.

Google Scholar

[14] Q. Yan, Z. Zhou, X. S. Zhao and S. J. Chua: Adv. Mater. 2005, in press.

Google Scholar

[15] P. Ferrand, M. Egen, R. Zentel, J. Seekamp, S. G. Romanov and C. M. S. Torres: Appl. Phys. Lett. 83 (2003), p.5289.

DOI: 10.1063/1.1636271

Google Scholar

[16] W. Stöber, A. Fink and E. Bohn: J. Colloid Interface Sci. 26 (1968), p.62.

Google Scholar

[17] Y. A. Vlasov, X. Bo, J. C. Sturm and D. J. Norris: Nature, 414 (2001), p.289.

Google Scholar

[18] S. G. Romanov, H. M. Yates, M. E. Pemble and R. M. De La Rue: J. Phys.: Condens. Matter 12 (2000), p.8221.

Google Scholar