Self-Assembled InAs Lateral Quantum Dot Molecules Growth on (001) GaAs by Thin-Capping-and-Regrowth MBE Technique

Article Preview

Abstract:

InAs lateral quantum dot molecules (QDMs) are grown on (001)-GaAs substrates. The self-assembled QDMs are formed in one continuous molecular beam epitaxial (MBE) growth via a thin-capping-and-regrowth technique. Lateral QDMs, each with 10-12 dots arranged in a specific pattern, are determined by the shapes of the underlying nanopropeller quantum dots (QDs). The nanopropeller QDs in turn are obtained by regrowth on nano-holes which have been previously created by capping the first InAs QD layer grown on (001)-GaAs substrate with a thin GaAs layer. The length of the propeller directly influences the number of QDs in a QDM. By varying the conditions for thin-capping, shorter or longer propellers can be achieved, allowing the number of QDs in each QDM to be controlled.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 121-123)

Pages:

395-400

Citation:

Online since:

March 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. B. Joyce, T. J. Krzyzewski, G. R. Bell, T. S. Jones, S. Malik, D. Childs, and R. Murray, Phys Rev B. 62 10891 (2000).

Google Scholar

[2] Y. Arakawa and H. Sakaki, Appl. Phys. Lett. 40, 939 (1982).

Google Scholar

[3] M. Asada, Y. Miyamoto, and Y. Suematsu, IEEE J. Quantum Electronics QE-22, 1915 (1986).

Google Scholar

[5] S. Kiravittaya, R. Songmuang, N.Y. Jin-Phillipp, S. Panyakeow, O.G. Schmidt, J. Cryst. Growth 251, 258 (2003).

Google Scholar

[6] �G. Ortner, M. Schwab, P. Borri, W. Langbein, U. Woggon, M. Bayer, S. Fafard, Z. Wasilewski, P. Hawrylak, Y.B. Lyanda-Geller, T.L. Reinecke, A. Forchel, Physica E 25, 256 (2004).

DOI: 10.1016/j.physe.2004.06.024

Google Scholar

[8] O.G. Schmidt, A. Rastelli, G.S. Kar, R. Songmuang, S. Kiravittaya, M. Stoffel, U. Denker, S. Stufler, A. Zrenner, D. Grutzmacher, B. -Y. Nguyen and P. Wennekers, Physica E, 25, 280 (2004).

DOI: 10.1016/j.physe.2004.06.027

Google Scholar

[9] T.V. Lippen, R. Nötzel, G.J. Hamhuis, and J.H. Wolter, Appl. Phys. Lett. 85, 118 (2004).

Google Scholar

[10] T. Mano, R. Nötzel, G.J. Hamhuis, T.J. Eijkemans, and J.H. Wolter, Appl. Phys. Lett. 81, 1705 (2002).

Google Scholar

[11] T. Mano, R. Nötzel, G.J. Hamhuis, T.J. Eijkemans, and J.H. Wolter, J. Appl. Phys. 95, 109 (2004).

Google Scholar

[12] K.M. Kim, Y.J. Park, S.H. Son, S.H. Lee, J.I. Lee, J.H. Park, and S. -K Park, Physica E 24, 148 (2004).

Google Scholar

[13] Z.M. Wang, K. Holmes, Yu I. Mazur, and G.J. Salamo, Appl. Phys. Lett. 84, 1931 (2004).

Google Scholar

[14] U.F. Keyser, M. Paesler, U. Zeitler, R.J. Haug, and K. Eberl, Physica E 13, 1155(2002).

Google Scholar

[15] S. Kiravittaya, S. Songmuang, S. Thainoi, S. Sopitpan, S. Kanjanachuchai, S. Ratanatummapan, M. Sawadsaringkarn, and S. Panyakeow, Proc. IEEE 28 th Photovoltaic Specialists Conference, Anchorage, USA, 15-22 September, (2000).

DOI: 10.1109/pvsc.2000.916008

Google Scholar

[16] S. Kumprachum, S. Kiravittaya, R. Songmuang, S. Thainoi, S. Kanjanachuchai, M. Sawadsaringkarn, and S. Panyakeow, Proc. IEEE 29 th Photovoltaic Specialists Conference, New Orleans, Louisiana , USA, 20-24 May, (2002).

DOI: 10.1109/pvsc.2002.1190787

Google Scholar

[17] S. Suraprapapich, S. Thainoi, S. Kanjanachuchai, and S. Panyakeow, Proc. 14 th Photovoltaic Science and Engineering Conference, Bangkok, Thailand, 28 January -1 February , (2004).

DOI: 10.1109/pvsc.2005.1488078

Google Scholar

[18] C.S. Lent, P.D. Tougaw, and W. Porod, Appl. Phys. Lett. 62, 714 (1993).

Google Scholar

[19] C.S. Lent, P.D. Tougaw, and W. Porod, Proc. IEEE Physics and Computation, 17-20 November (1994).

Google Scholar

[20] S. Suraprapapich, S. Thainoi, S. Kanjanachuchai, and S. Panyakeow, J. Vac. Sci and Tech. B.

Google Scholar

[23] (3) (2005).

Google Scholar

[21] D. Granados and J.M. Garcia, Appl. Phys. Lett. 82, 2401 (2003).

Google Scholar