Biomimetic Synthesis of Nanoporous Silica Templated by Copolypeptide in the Organic Gel System

Article Preview

Abstract:

At neutral pH value and room temperature, nanoporous silica has been prepared through self-organization of synthetic block copolypeptide Poly(ethyl glycol)-b-poly(L-phenylalanine) (MPEG44–b-Phe7) and silicane in the organic gel system. In this system, π-π interaction between anilino-methyl triethoxy silicane and block copolypeptide MPEG44–b-Phe7 effectively controlled the growth of the silica precursors. SEM images show that the size of silica is relatively uniform with the length ranging from 20~50 μm and the diameter ranging from 2~5 μm. FT-IR spectra reveals that there exists nanoporous structure in the calcined sample. N2 adsorption-desorption isotherms are consistent with the results of FT-IR spectra and show a type-IV isotherm with H1-type hysteresis loop, which means the presence of uniform nanoporous structure. This sample has a BET surface area of 171 m2.g-1 and a pore volume of 0.55 cm3.g-1. The average pore size calculated by BJH method is 10 nm. Our results suggest a new biomimetic avenue for synthesis of nanoporous inorganic materials templated by the self-organization of copolypeptide .

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 121-123)

Pages:

897-900

Citation:

Online since:

March 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E. Bauerlein: Angew. Chem. Int. Ed. Vol. 42 (2003 ), p.614.

Google Scholar

[2] J.N. Cha., K. Shimizu, G.D. Stucky et al.: Proc. Natl. Acad. Sci. U.S.A. Vol. 96 (1999), p.361.

Google Scholar

[3] J.N. Cha.,G.D. Stucky, D.E. Morse et al. : Nature Vol. 403 (2000), p.289.

Google Scholar

[4] M.S. Wong, J.N. Cha., K.S. Choi et al.: Nano. Lett., Vol. 2 (2002), p.583.

Google Scholar

[5] F. Rodriguez, D.D. Glawe, R.R. Naik et al.: Biomacromolecules Vol. 5(2004), p.261.

Google Scholar

[6] K.M. Hawkins, S-S Wang Steven, D.M. Ford et al.: J. Am. Chem. Soc. Vol. 126 ( 2004), p.9112.

Google Scholar

[7] T. Coradin, P.J. Lopez.: Chem. Biochem. Vol. 3 (2003), p.1.

Google Scholar

[8] S. Mann: Angew. Chem. Int. Ed. Vol. 39 (2000), p.3393.

Google Scholar

[9] C. Sanchez, H. Arribart, G.M.M. Guille : Nature materials Vol. 4 (2005), p.277.

Google Scholar

[10] J.H. Jung, Y. Ono, K. Hanabusa et al.: J. Am. Chem. Soc Vol. 122 (2000), p.5008.

Google Scholar

[11] S. Kawano, S. Tamaru, N. Fujita et al.: Chem. Eur.J. Vol. 10( 2004), p.343.

Google Scholar

[12] R. Tamaki, K. Samura and Y. Chujo: Chem. Commun (1998), p.1131.

Google Scholar

[13] A. Bouchara, A. Soler-Illia., J.Y. Chane-Ching et al. Chem. Commun (2002), p.1234.

Google Scholar

[14] L.Y. Li, P.C. Sun, Y. Yao et al.: Acta Polymerica Sinica, in press.

Google Scholar

[15] A.R. Zimmerman, K.W. Goyne, J. Chorover et al.: Organic Geochemistry Vol. 35 (2004) , p.355.

Google Scholar

[16] V.L. Zholobenko, S.M. Holmes, C.S. Cundy et al.: Microporous Materials, Vol. 11(1997), p.83.

Google Scholar

[17] M.D. Alba, Z.H. Luan and J. Klinowski.: J. Phys. Chem. Vol. 100 (1996), p.2178.

Google Scholar

[18] R.R. Xu,W.Q. Pang, J.H. Yu et al. : Chemistry-Zeolites and Porous Materials, (Science Press, China 2004).

Google Scholar