Observation of Dynamic Behavior in Primer-Coated Steel Welding by CO2 Laser

Abstract:

Article Preview

This study examines for keyhole behavior by observing the laser-induced plasma and investigates the relation between keyhole behavior and formation of weld defect. Laser-induced plasma has been accompanied with the vaporizing pressure of zinc ejecting from keyhole to surface of primer coated plate. This dynamic behavior of plasma was very unstable and it was closely related to the unstable motion of keyhole during laser welding. As a result of observing the composition of porosity, much of Zn element was found from inner surface of it. But Zn was not found from the dimple structure fractured at the weld metal. therefore we can prove that the major cause of porosity is the vaporization of primer in lap position. Mechanism of porosity-formation is that the primer vaporized from the lap position accelerates dynamic behavior of the key hole and the bubble separated from the key hole is trapped in the solidification boundary and remains as porosity.

Info:

Periodical:

Solid State Phenomena (Volumes 124-126)

Edited by:

Byung Tae Ahn, Hyeongtag Jeon, Bo Young Hur, Kibae Kim and Jong Wan Park

Pages:

1425-1428

DOI:

10.4028/www.scientific.net/SSP.124-126.1425

Citation:

J. D. Kim et al., "Observation of Dynamic Behavior in Primer-Coated Steel Welding by CO2 Laser", Solid State Phenomena, Vols. 124-126, pp. 1425-1428, 2007

Online since:

June 2007

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.