Formation and Optical Properties of ZnSe Self-Assembled Quantum Dots in Cl-Doped ZnSe Thin Films Grown on GaAs (100) Substrates

Article Preview

Abstract:

The high-resolution scanning electron microscopy (HRSEM) image showed that selfassembled ZnSe small quantum dots (QDs) and large nanodots with a pyramid shape were formed in the Cl-doped ZnSe epilayers grown on GaAs (100) substrates. The formation of the ZnSe QDs was attributed to three-dimensional growth controlled by distribution of the impurities in the Cldoped ZnSe epilayrs. Cathodoluminescence (CL) measurements at room temperature revealed the emission peak at 3.1 eV corresponding to the blue shift approximately 400 meV from the near band edge emission of 2.7 eV in the bulk ZnSe. The blue shifted CL peak indicates the quantum confinement effect resulting from the formation of the ZnSe QDs in the Cl-doped ZnSe thin film. While the peak position of the donor-acceptor pair emission shifted to higher energies with decreasing temperature, the band-edge emission peak for the QDs did not significantly change.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 124-126)

Pages:

567-570

Citation:

Online since:

June 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. Bimberg, M. Grundmann, and N. N. Ledenstov, Quantum Dot Heterostructures (Wiley, New York, 1998).

Google Scholar

[2] J. Tatebayashi, N. Hatori, M. Ishida, H. Ebe, M. Sugawara, Y. Arakawa, H. Sudo, and A. Kuramata, Appl. Phys. Lett. Vol. 86, 053107 (2005).

DOI: 10.1063/1.1857075

Google Scholar

[3] K. Kawasaki, D. Yamazaki, A. Kinoshita, H. Hirayama, K. Tsutsui, and Y. Aoyagi, Appl. Phys. Lett. Vol. 79 (2001), p.2243.

Google Scholar

[4] Q. Xie, P. Chen, and A. Madhukar, App. Phys. Lett. Vol. 65 (1996), p. (2051).

Google Scholar

[5] S. Tanaka, S. Iwai, and Y. Aoyagi, Appl. Phys. Lett. Vol. 69 (1996), p.4098.

Google Scholar

[6] S. Facsko, T. Dekorsy, C. Koerdt, D. Trappe, H. Kurz, A. Vogt, and H. L. Hartnagel, Science Vol. 285 (1999), p.1551.

DOI: 10.1126/science.285.5433.1551

Google Scholar

[7] G. N. Panin, T. W. Kang, T. W. Kim, S. H. Park, S. M. Si, Y. S. Ryu, and H. C. Jeon, Physica E Vol. 17 (2003), p.484.

Google Scholar

[8] G. N. Panin, Y. S. Park, T. W. Kang, T. W. Kim, K. L. Wang, and M. Bao, J. Appl. Phys. Vol. 97, 043527 (2005).

Google Scholar

[9] T. W. Kim, J. H. Kim, H. S. Lee, J. Y. Lee, and M. D. Kim, Appl. Phys. Lett. Vol. 86, 021916 (2005).

Google Scholar

[10] H. S. Lee, H. L. Park, and T. W. Kim, Appl. Phys. Lett. Vol. 85 (2004), p.5598.

Google Scholar

[11] B. J. Wu, L. H. Kuo, J. M. DePuydt, G. M. Haugen, M. A. Haase, and L. Salamanca-Riba, Appl. Phys. Lett. Vol. 68 (1996), p.379.

DOI: 10.1063/1.116691

Google Scholar

[12] Y. G. Kim, Y. S. Joh, J. H. Song, E. D. Sim, K. S. Baek, S.K. Chang, and J. I. Lee, Appl. Phys. Lett. Vol. 85 (2004), p. (2056).

Google Scholar

[13] M. S. Jang, S. H. Oh, H. S. Lee, J. C. Choi, H. L. Park, T. W. Kim, D. C. Choo, and D. U. Lee, Appl. Phys. Lett. Vol. 81 (2002) p.993.

Google Scholar

[14] T. Yasuda, T. Yasui, B. -P. Zhang, and Y. Segawa, J. Cryst. Growth Vol. 159 (1996), p.1168.

Google Scholar

[15] D. Valerini, A Cretí, M. Lomascolo, L. Manna, R. Cingolani, and M. Anni, Phys. Rev. B Vol. 71, 235409 (2005).

Google Scholar