TEM Studies on Phase Stability in Nanometer-Sized Alloy Particles

Article Preview

Abstract:

TEM is one of the most powerful experimental tools for the study of nanometer-sized particles. In the present work, the finite size effect on both the stability of two-phase microstructure and the solid solubility has been examined by in situ TEM using particles in the Au-Ge system. The size effect on the two-phase microstructure is rather small when the size of particles is larger than approximately 10 nm in diameter. However, the effect becomes strong in particles smaller than about 10 nm in diameter and an amorphous structure appears instead of the crystalline two-phase microstructure. The solid solubility in each solid solution in nanometer-sized alloy particles with a two-phase microstructure gradually increased as the particle size decreased. The enhancement of solid solubility was large in gold solid solution as compared with the in germanium solid solution.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 127)

Pages:

135-140

Citation:

Online since:

September 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. P. Andres et al., J. Mater. Res. 4, 704 (1989).

Google Scholar

[2] V. L. Covin, M. C. Schlamp, and A. P. Alivisatos, Nature 370, 354 (1994).

Google Scholar

[3] J. R. Sambles, Proc. R. Soc. Lond. A 324, 339 (1971).

Google Scholar

[4] Ph. Buffat and J-P. Borel, Phys. Rev. A 13, 2287 (1976).

Google Scholar

[5] G. L. Allen, R. A. Bayles, W. W. Gile, and W. A. Jesser, Thin Solid Films 144, 297 (1986).

DOI: 10.1016/0040-6090(86)90422-0

Google Scholar

[6] T. Castro and R. Reifenberger, Phys. Rev. B 42, 8548 (1990).

Google Scholar

[7] W. A. Jesser, G. J. Shiflet, G. L. Allen, and J. L. Crawford, Mater. Res. Innovat. 2, 211 (1999).

Google Scholar

[8] M. Wautelet, J. P. Dauchot, and M. Hecq, Nanotechnology 11, 6 (2002).

Google Scholar

[9] L. H. Liang, D. Liu, and Q. Jiang, Nanotechnology 14, 438 (2003).

Google Scholar

[10] A. S. Shirinyan and A. M. Gusak, Philos. Mag. 84, 579 (2004).

Google Scholar

[11] J. -G. Lee, J. Lee, T. Tanaka, H. Mori, and K. Penttila, J. Metals 57, 56 (2005).

Google Scholar

[12] S. Sun et al., Science 287, 1989 (2002).

Google Scholar

[13] A. Eychmuller, A. Mews, and H. Weller, Chem. Phys. Lett. 208, 59 (1993).

Google Scholar

[14] S. Giorgio and C. R. Henry, Eur. Phys. J. Appl. Phys. 20, 23 (2002).

Google Scholar

[15] J. -G. Lee, H. Mori, and H. Yasuda, Phys. Rev. B 65, 132106 (2002).

Google Scholar

[16] J. -G. Lee, H. Mori, and H. Yasuda, Phys. Rev. B 66, 012105 (2002).

Google Scholar

[17] J. -G. Lee and H. Mori, J. Electro. Micros. 52, 57 (2003).

Google Scholar

[18] J. -G. Lee and H. Mori, Phys. Rev. Lett. 93, 235501 (2004).

Google Scholar

[19] J. -G. Lee and H. Mori, Eur. Phys. J. D 34, 227 (2005).

Google Scholar

[20] J. -G. Lee and H. Mori, Philos. Mag. 84, 2675 (2004).

Google Scholar

[21] J. -G. Lee, H. Mori, and H. Yasuda, J. Mater. Res. 20, 1708 (2005).

Google Scholar

[22] J. -G. Lee and H. Mori, J. Vac. Sci. Tech. A 21, 32 (2003).

Google Scholar

[23] O. Kubaschewski, E. Li. Evans, and C. B. Alcock, Materials Thermo-Chemistry (Pergamon Press, 6th ed., 1993).

Google Scholar

[24] T. B. Massalski et al., Binary Alloy Phase Diagrams (American Society for Metals, Metals Park, OH, 1986).

Google Scholar