Optical Properties of ZnS:Mn2+ Yellow Nanophosphor Prepared by Spray Pyrolysis

Article Preview

Abstract:

Spray pyrolysis was used to prepare ZnS:Mn2+ yellow nanophosphor. As an increase in firing temperature for spray pyrolysis, more nanoparticles of a hexagonal phase were formed together with these of the cubic structure. The optimized emission intensity was observed when the nanophosphor was fired at 900 oC after using a spraying solution of 3.5 pH. The particle size ranged from 60 nm to 400 nm. The ZnS:Mn2+ nanophosphor showed a redshift of about 10 nm in the emission spectrum compared to the microphosphor synthesized by solid-state reaction. The temperature-dependence photoluminescence showed different spectroscopic behaviour and displayed a longer decay time than the microphosphor.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 128)

Pages:

179-184

Citation:

Online since:

October 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] He Hu and Weihua Zhang: Optical Mater. Vol. 28 (2006), p.536.

Google Scholar

[2] K.E. Waldrip, J.S. Lewis III, Q. Zhai, M.R. Davidson, P.H. Holloway, and S.S. Sun: Appl. Phys. Lett. Vol. 76 (2000), p.1276.

Google Scholar

[3] G. Counio, T. Gacoin, and J. P. Boilot: J. Phys. Chem. Vol. B 102 (1998), p.5257.

Google Scholar

[4] W. Chen, A. G. Joly, and J. Z. Zhang: Phys. Rev. Vol. B 64 (2001), p.41202.

Google Scholar

[5] K. Yan, C. K. Duan, Y. Ma, S. D. Xia, and J. -C. Krupa: Phys. Rev. Vol. B 58 (1998), p.13585.

Google Scholar

[6] A. A. Bol and A. Meijerink: Phys. Rev. Vol. B 58 (1998), p. R15997.

Google Scholar

[7] N. Murase, R. Jagannathan, Y. Kanematsu, M. Watanabe, A. Kurita, K. Hirata, T. Yazawa, and T. Kushida: J. Phys. Chem. Vol. B 103 (1999), p.754.

DOI: 10.1021/jp9828179

Google Scholar

[8] Tanaka M and Masumoto Y: Chem. Phys. Lett. Vol. 324 (2000), p.249.

Google Scholar

[9] Joly A G, Chen W, Roark J and Zhang J Z: J. Nanosci. Nanotechnol. Vol. 1 (2001), p.295.

Google Scholar

[10] F H Su, B SMa, Z L Fang, K Ding, G H Li and W Chen: J. Phys. Vol. 14 (2002), p.12657.

Google Scholar

[11] L.M. Gan, B. Liu, C.H. Chew, S.J. Xu: Langmuer Vol. 13 (1997), p.6427.

Google Scholar

[12] Xi-Bin Yu, Li-Hong Mao, Zhang-Fan, Liang-Zhun Yang, and Shi-Ping Yang: Mater. Lett. Vol. 58 (2004), p.3661.

Google Scholar

[13] Bin Xia, I. Wuled Lenggoro, and Kikuo Okuyama: Chem. Mater. Vol. 14 (2002), p.4969.

Google Scholar

[14] C. Falcony, M. Garcia, A. Ortiz, and J.C. Alonso: J. Appl. Phys. Vol. 72 (1992), p.1525.

Google Scholar

[15] G. L. Messing, S. C. Zhang, G. V. Jayanthi: J. Am. Ceram. Soc. Vol. 76 (1993), p.2707.

Google Scholar

[16] B. Henderson and G. G. Imbush: Optical Spectroscopy of Inorganic Solids (Clarendon Press, Oxford 1989).

Google Scholar

[17] L. Chen, J. Kampmann, P. J. Klar, W. Heimbrodt, F. J. Brieler, and M. Fröba: Phys. Stat. Sol. (b) Vol. 243 (2006), p.839.

DOI: 10.1002/pssb.200564623

Google Scholar