Spectroscopic and Magnetic Properties of Gadolinium Macroacyclic and Macrobicyclic Complexes

Article Preview

Abstract:

As a result of the Schiff base condensation the gadolinium macroacyclic and macrobicyclic Schiff base complexes have been synthesized and investigated by infrared spectroscopy (IR) and electron paramagnetic resonance (EPR). Both electron ionization and electron spray Molecular Spectroscopy spectra confirmed the [1:1] proportion of a ligand to metal in gadolinium macrocyclic and mocrobicyclic Schiff base complex samples. The thermogravimetrydifferential thermal analysis (TG-DTA) indicated the presence of two water molecules in the innersphere of the macrobicyclic complex and confirmed no water coordination of the metal ion in the macroacyclic complex. The temperature dependence of the integrated intensity of the EPR spectra enabled the magnetic interactions in the spin system of these compounds to be revealed.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 128)

Pages:

199-205

Citation:

Online since:

October 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B. Dietrich: Macrocyclic Chemistry, Aspects of Organic and Inorganic Supramolecular Chemistry (VCH, Weihein 1993).

Google Scholar

[2] D. Parker: Macrocyclic Synthesis (Oxford University Press, Oxford 1996).

Google Scholar

[3] W. Radecka-Paryzek et al.: Wiad. Chem. Vol. 50 (1996), p.171.

Google Scholar

[4] P. A. Vigato, S. Tamburini: Coordination Chemistry Reviews Vol. 248 (2004), p.1717.

Google Scholar

[5] N. Brianese, U. Casellato, S. Tamburini, P. Tomasin, P. A. Vigato: Inorganica Chimica Acta Vol. 272 (1998), p.235.

DOI: 10.1016/s0020-1693(97)05909-4

Google Scholar

[6] M. Kanesato, F. N. Ngassapa, T. Yokoyama: Analytical Sciences Vol. 17 (2001), p.1359.

Google Scholar

[7] H. Kobayashi, S. Kawamoto, S. K. Jo, H. L. Bryant Jr, M. W. Brechbiel, R. A. Star: Bioconjugate Chem. Vol. 14 (2003), p.388.

Google Scholar

[8] K. N. Raymond, V. C. Pierre: Bioconjugate Chem. Vol. 16 (2005), p.3.

Google Scholar

[9] J. Torres, M. Brusoni, F. Peluffo, C. Kremer, S. Dominguez, A. Mederos, E. Kremer: Inorganica Chimica Acta Vol. 358 (2005), p.3320.

DOI: 10.1016/j.ica.2005.05.003

Google Scholar

[10] W. Radecka-Paryzek, V. Patroniak, J. Lisowski: Coordination Chemistry Reviews Vol. 249 (2005), p.2156.

DOI: 10.1016/j.ccr.2005.02.021

Google Scholar

[11] M.J. Mombourquette, J.A. Weil, D.G. McGavin: EPR-NMR User's Manual (Department of Chemistry, University of Saskatchewan, Saskatoon, Canada).

Google Scholar

[12] N. Brianese, U. Casellato, S. Tamburini, P. Tomasin, P.A. Vigato: Inorganica Chimica Acta, Vol. 272 (1998), p.235.

DOI: 10.1016/s0020-1693(97)05909-4

Google Scholar

[13] R.M. Issa, A.M. Khedr, H.F. Rizk: Spectrochimica Acta Part A Vol. 62 (2005), p.621.

Google Scholar

[14] F. Yakuphanoglu, M. Sekerci: Journal of Molecular Structure Vol. 751 (2005), p.200.

Google Scholar

[15] Liu Guofa, Shi Tongshun, Zhao Yongnian: Journal of Molecular Structure Vol. 412 (1997), p.75.

Google Scholar

[16] R.C. Maurya, P. Patel: Spectrosc. Lett. Vol. 32 (2) (1999), p.213.

Google Scholar

[17] C. Topacli, A. Topacli: Journal of Molecular Structure Vol. 654 (2003), p.131.

Google Scholar

[18] A. Abragam, B. Bleaney: Electron paramagnetic resonance of transition ions (Clarendon Press, Oxford 1970).

Google Scholar