Revisiting Local Electric Fields on Close-Packed Metal Surfaces: Theory Versus Experiments

Article Preview

Abstract:

An external electrostatic field of the order of a few tens of a volt per nanometer causes significant changes in the electron density distribution near a metal surface. Because of differing electronic distributions and varying responses of electrons to the applied field for various metals, the resulting local field distribution in the close vicinity of the surface should depend on the electronic properties of the particular metal, even for flat surfaces. Field-free and field-modified electron density distributions for different metal surfaces were calculated using the functional integration method. This approach enables the exchange-correlation effects to be correctly considered and makes it possible to account for the proper field-effect for broad field ranges without using the perturbation theory. The results of calculations are compared with the field-ion microscopic observations.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 128)

Pages:

219-224

Citation:

Online since:

October 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.K. Norskov, in: Coadsorption, Promoters and Poisons, edited by D.A. King, D.P. Woodruff, Elsevier, Amsterdam (1993) pp.1-27.

Google Scholar

[2] T. V. W. Janssens, G. R. Castro and K. Wandelt, J. W. Niemantsverdriet: Phys. Rev. B Vol. 49 (1994), p.14599.

Google Scholar

[3] I. N. Yakovkin, V. I. Chernyi and A. G. Naumovets: Surf. Sci. Vol. 442 (1999) 81.

Google Scholar

[4] Y.B. Losovyj, I.V. Ketsman, P.P. Kostrobij, and Yu. Suchorski: Vacuum Vol. 63/1-2 (2001) 277.

DOI: 10.1016/s0042-207x(01)00202-0

Google Scholar

[5] Yu. Suchorski, R. Imbihl and V.K. Medvedev: Surf. Sci., Vol. 401 (1998) 392.

Google Scholar

[6] J.E. Inglesfield: Surf. Sci. Vol. 188 (1987) L701.

Google Scholar

[7] Y. Suchorski, W.A. Schmidt, N. Ernst, J.H. Block and H.J. Kreuzer: Progr. Surf. Sci. Vol. 48 (1995), p.121, and references therein.

Google Scholar

[8] N. M. Miskovsky and Tien T. Tsong: Phys. Rev. B Vol. 46 (1992), p.2640.

Google Scholar

[9] Y. Suchorski, N. Ernst, W.A. Schmidt, V.K. Medvedev, H.J. Kreuzer, R.L.C. Wang,: Progr. Surf. Sci. Vol. 53 (1996), p.135.

Google Scholar

[10] Y. Suchorski, W. A. Schmidt, and J. H. Block: Appl. Surf. Sci. Vol. 67 (1993), p.124.

Google Scholar

[11] W.A. Schmidt, N. Ernst and Y. Suchorski: Appl. Surf. Sci. Vol. 7 (1993), p.101.

Google Scholar

[12] G.G. Aers and J.E. Inglesfield: Surf. Sci. Vol. 217 (1989), p.367.

Google Scholar

[13] H.J. Kreuzer, L.C. Wang, N.D. Lang: Phys. Rev. B Vol. 45 (1992), p.12050 and refs. therein.

Google Scholar

[14] P. Gies and R. R. Gerhardts: Phys. Rev. B Vol. 33, 982-989 (1986), p.982.

Google Scholar

[15] Y. Gohda, Y. Nakamura, K. Watanabe, and S. Watanabe: Phys. Rev. Lett. Vol. 85 (2000), p.1750.

Google Scholar

[16] A.G. Eguiluz, M. Heinrichsmeier, A. Fleszar, W. Hanke: Phys. Rev. Lett. Vol. 68 (1992), p.1359.

Google Scholar

[17] P.P. Kostrobiy, B.M. Markovych: Condensed Matter Physics Vol. 6 (2003), p.347.

Google Scholar

[18] P.P. Kostrobiy, B.M. Markovych: J. Phys. Stud. Vol. 7 (2003), p.298.

Google Scholar

[19] Y. Suchorski, W. A. Schmidt, J. H. Block: Appl. Surf. Sci. Vol. 67 (1993), p.124.

Google Scholar

[20] Y. Suchorski, W. A. Schmidt, J. H. Block and H.J. Kreuzer: Vacuum Vol. 45 (1994), p.259.

Google Scholar

[21] Y. Suchorski, J. Beben: Progr. Surf. Sci. Vol. 73 (2003), p.3.

Google Scholar

[22] T.T. Tsong: Atom-Probe Field Ion Microscopy (Cambridge University Press, Cambridge, UK, 1990).

Google Scholar

[23] H. Yamauchi: Phys. Rev. B Vol. 31 (1985), p.7688.

Google Scholar