Catalytic Activity for Methane Flameless Combustion and Thermal Stability of Nano-Sized Lanthanum Cobaltites Doped with Ce, Pr and Tb

Article Preview

Abstract:

High surface area nano-sized catalysts with the general formula La0.9M0.1CoO3 (M=Ce, Pr, Tb) were synthesised by a novel flame-spray-pyrolysis method. All the prepared samples possessed the LaCoO3 perovskite-like structure and consisted of 30-60 nm particles, but existing as large (80-200 nm) agglomerates. Their surface area ranged from 45 to 60 m2/g. All the catalysts showed a very high activity for methane flameless combustion, attaining 100% conversion at temperatures Tf, between 495 and 515 0C, depending on the nature of the M doping ion. The results of life-tests did not show any decreasing of catalytic activity after 50 h under the reaction conditions at Tf. The thermal stability under high temperature application was investigated by overheating the catalysts twice at 800 0C for 1 hr in a flowing reacting gas mixture, fast deactivation cycles, and then measuring methane conversion at Tf. All the catalysts showed a significant decrease of activity, depending on the chemical composition. Taking account of the results of SEM analysis, this was attributed to sintering, connected with the Gibbs instability of nano-sized materials.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 128)

Pages:

255-260

Citation:

Online since:

October 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.F. Zwinkels, S.G. Järås and P.G. Menon. Catal. Rev. -Sci. Eng., Vol. 35 (1993), p.319.

Google Scholar

[2] K. Eguchi, H. Arai. Catal. Today, Vol. 29 (1996), p.379.

Google Scholar

[3] R. Burch. Catal. Today, Vol. 35 (1997), p.27.

Google Scholar

[4] J.G. Mc Carty, H. Wise. Catal. Today, Vol. 8 (1990), p.231.

Google Scholar

[5] H. Arai, T. Yamada, K. Eguchi and T. Seiyama. Appl. Catal., Vol. 26 (1986), p.23.

Google Scholar

[6] R. Leanza, I. Rossetti, L. Fabbrini, C. Oliva and L. Forni. Appl. Catal. B: Environ., Vol. 28 (2000), p.55.

Google Scholar

[7] D. Ferri, L. Forni. Appl. Catal. B: Environ., Vol. 16 (1998), p.119.

Google Scholar

[8] T. Seiyama, in: Properties and Application of Perovskite-like Oxide, edited By L.G. Tejuca and J.L.G. Fierro, Marcel Dekker: New York, Chem. Ind, (1993), p.215.

Google Scholar

[9] A. Kaddouri, S. Ifrah. Catal. Commun., Vol. 7 (2005), p.109.

Google Scholar

[10] Handbook on the Physics and Chemistry of Rare Earths, Vol. 3, edited by K.A. Gschneidner and L. Eyring, North-Holland Publishing Co: Amsterdam, (1979), p.337.

Google Scholar

[11] L. Fabbrini, A. Kryukov, S. Cappelli, G.L. Chiarello, I. Rossetti, C. Oliva and L. Forni. J. Catal., Vol. 232 (2005), pp.247-256.

DOI: 10.1016/j.jcat.2005.03.012

Google Scholar

[12] L. Mädler, H. Kammler, R. Mueller and S. Pratsinis. Aerosol Sci., Vol. 33 (2002), p.369.

Google Scholar

[13] G.L. Chiarello, I. Rossetti and L. Forni. J. Catal., Vol. 236 (2005), p.251.

Google Scholar

[14] C. Oliva, S. Cappelli, I. Rossetti, A. Kryukov, L. Bonoldi and L. Forni. J. Mol. Catal. A: Chem., Vol. 245 (2006), p.55.

Google Scholar

[15] C. Oliva, S. Cappelli, A. Kryukov, G.L. Chiarello, A.V. Vishniakov and L. Forni. J. Mol. Catal. A: Chem., Vol. 255 (2006), p.36.

Google Scholar

[16] J. Kirchnerova, M. Alifanti and B. Delmon. Appl. Catal. A: General, Vol. 231 (2002), p.65.

Google Scholar

[17] I. Rossetti, L. Forni. Appl. Catal. B: Environ., Vol. 33 (2001), p.345.

Google Scholar