Multi-Wall Carbon Nanotubes as a Support for Platinum Catalysts for the Hydrodechlorination of Carbon Tetrachloride and Dichlorodifluoromethane

Article Preview

Abstract:

Multi-wall carbon nanotubes (MWCNTs) were used as a support for the deposition of highly dispersed platinum. After characterization by several physical techniques, the catalyst was studied in reactions for: hydrodechlorination of carbon tetrachloride and the hydrodechlorination of dichlorodifluoromethane. For the first reaction Pt/MWCNTs were very effective catalysts in terms of both the overall activity and the selectivity to CHCl3; both quantities appeared high and stable. For CCl2F2 hydrodechlorination the catalyst was rather moderate, although very stable, activity and product selectivities were established at a constant level in a relatively short time-on-stream. The MWCNTs-supported Pt particles do not undergo great changes during the reactions, i.e. neither substantial metal sintering occurred nor extensive surface carbonization/chloriding took place.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 128)

Pages:

261-271

Citation:

Online since:

October 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N.I. Buchan, T.F. Kuech, G. Scilla, F. Cardone: J. Cryst. Growth 110 (1991), 405.

Google Scholar

[2] J. Tokuda, M. Takai, H. Nakai, K. Gamo, S. Namba: J. Opt. Soc. Am. B 4 (1987), 267.

Google Scholar

[3] M.J. Molina, F.S. Rowland: Nature 249 (1974), 810.

Google Scholar

[4] F.S. Rowland, M.J. Molina: Rev. Geograph. & Space Phys. 13 (1975), 1.

Google Scholar

[5] C. Holden: Science 255 (1996), 486.

Google Scholar

[6] A. Wiersma, E.J.A.X. van de Sand, M. den Hollander, H. van Bekkum, M. Makkee, J.A. Moulijn: J. Catal. 177 (1998), 29.

Google Scholar

[7] B. Coq, J.M. Cognion, F. Figueras, D. Tournigant: J. Catal. 141 (1993), 21.

Google Scholar

[8] B. Coq, F. Figueras, S. Hub, D. Tournigant: J. Phys. Chem. 99 (1995), 11159.

Google Scholar

[9] Z. Karpiński, K. Early, J.L. d'Itri: J. Catal. 164 (1996), 378.

Google Scholar

[10] M. Makkee, A. Wiersma, E.J.A.X. van de Sandt, H. van Bekkum, J.A. Moulijn: Catal. Today 55 (2000), 125.

DOI: 10.1016/s0920-5861(99)00232-1

Google Scholar

[11] A. Malinowski, W. Juszczyk, J. Pielaszek, M. Bonarowska, M. Wojciechowska, Z. Karpiński: Stud. Surf. Sci. Catal. 130 (2000), (1991).

Google Scholar

[12] Z. Karpiński, J. L. d'Itri: Catal. Lett. 77 (2001), 135.

Google Scholar

[13] M. Bonarowska, J. Pielaszek, V.A. Semikolenov, Z. Karpiński: J. Catal. 209 (2002), 528.

Google Scholar

[14] S.C. Fung, J.H. Sinfelt: J. Catal. 103 (1987), 220.

Google Scholar

[15] M. Legawiec-Jarzyna, A. Śrębowata, W. Juszczyk, Z. Karpiński: J. Mol. Catal. A: Chemical 224 (2004), 171.

DOI: 10.1016/j.molcata.2004.07.033

Google Scholar

[16] A.H. Weiss, B.S. Gambhir, R.B. Leon: J. Catal. 22 (1971), 245.

Google Scholar

[17] L. Prati, M. Rossi: Appl. Catal. B 23 (1999), 135.

Google Scholar

[18] V. Dal Santo, C. Dossi, S. Recchia, P.E. Colavita, G. Vlaic, R. Psaro: J. Mol. Catal. A 182- 183 (2002), 157.

DOI: 10.1016/s1381-1169(01)00458-7

Google Scholar

[19] Z.C. Zhang, B.C. Beard: Appl. Catal. A 174 (1998), 33.

Google Scholar

[20] Z.C. Zhang, B.C. Beard: Appl. Catal. A 188 (1999), 229.

Google Scholar

[21] Z.C. Zhang, J. Hare, B. Beard: Book of Abstracts of the 13th International Congress on Catalysis, Paris, 2004, Vol. 2, p.96, Paper No. O2-017 (also CD of Extended Abstracts).

Google Scholar

[22] B. Coq, F. Bouchara, D. Tournigant, F. Figuéras: Environmental Catalysis (G. Centi, C. Cristiani, P. Forzatti, S. Perathoner, Eds. ), pp.583-586, SCI Pub., Rome, (1995).

Google Scholar

[23] H.C. Choi, S.H. Choi, O.B. Yang, J.S. Lee, K.H. Lee, Y. Kim: J. Catal. 161 (1996), 790.

Google Scholar

[24] H.C. Choi, S.H. Choi, J.S. Lee, K.H. Lee, Y. Kim: J. Catal. 166 (1997), 284.

Google Scholar

[25] S. -B. Lee, S. -I. Pyun: J. Appl. Electrochem. 30 (2000), 795.

Google Scholar

[26] W.X. Chen, Y.J. Lee, Z. Liu: Mater. Lett. 58 (2004), 3166.

Google Scholar

[27] M. Bonarowska, J. Pielaszek, W. Juszczyk, Z. Karpiński: J. Catal. 195 (2000), 304.

Google Scholar

[28] W. Juszczyk, Z. Karpiński, D. Łomot, J. Pielaszek, J.W. Sobczak: J. Catal. 151 (1995), 67.

Google Scholar

[29] W. Rachmady, M.A. Vannice: J. Catal. 192 (2000), 322.

Google Scholar

[30] L.S. Vadlamannati, V.I. Kovalchuk, J.L. d'Itri: Catal. Lett. 58 (1999), 173.

Google Scholar

[31] P.P. Kulkarni, S. S. Deshmukh, V.I. Kovalchuk, J.L. d'Itri: Catal. Lett. 61 (1999), 161.

Google Scholar

[32] M. Legawiec-Jarzyna, A. Śrębowata, W. Juszczyk, Z. Karpiński: React. Kinet. Catal. Lett. 87 (2006), 291.

DOI: 10.1007/s11144-006-0036-0

Google Scholar

[33] H. Lieske, G. Lietz, H. Spindler, J. Völter: J. Catal. 81 (1983), 8.

Google Scholar

[34] M. Legawiec-Jarzyna, A. Śrębowata, W. Juszczyk, Z. Karpiński: Catalysis Today 88 (2004), 93.

DOI: 10.1016/j.cattod.2003.11.002

Google Scholar

[35] N. Krishnankutty, M.A. Vannice: J. Catal. 155 (1995), 312.

Google Scholar

[36] C. Amorim, G. Yuan, P.M. Patterson, M.A. Keane: J. Catal. 234 (2005), 268.

Google Scholar

[37] Z. Zhong, B. Liu, L. Sun, J. Ding, J. Lin, K.L. Tan: Chem. Phys. Lett., 362 (2002), 135.

Google Scholar