Catalytic Decomposition of Ethylene on Nanocrystalline Cobalt

Article Preview

Abstract:

Nanocrystalline cobalt was carburised with ethylene in the range 340– 500°C to obtain Co(C) nanocapsules. The carbon deposit was reduced by a flow of hydrogen in the range 500– 560°C. The reduction kinetics were studied using thermogravimetry, described by the equation: α = Α[1-exp(-kt)n]. The apparent activation energy of the reduction process of the carbon deposit was determined. After carburisation and reduction the samples were examined by XRD and HRTEM.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 128)

Pages:

249-254

Citation:

Online since:

October 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Pauser, R. Reszka, S. Wagner, K.J. Wolf, H.J. Buhr, G. Berger: Anti-Cancer Drug Des. 12 (1997), p.125.

Google Scholar

[2] C.H. Kiang, W.A. Goddard, R. Beyers, J.R. Salem, D.S. Bethune: J. Phys. Chem. Solids 57 (1996), p.35.

Google Scholar

[3] J.M. Bonard, S. Seraphin, J.E. Wegrowe, J. Jiao, A. Chatelain: Chem. Phys. Lett. 343 (2001), p.251.

Google Scholar

[4] R. Seshadri, R. Sen, G.N. Subbanna, K.R. Kannan, C.N.R. Rao: Chem. Phys. Lett. 231 (1994), p.308.

Google Scholar

[5] X. Sun, A. Gutierrez, M.J. Yacaman, X. Dong, S. Jin: Mater. Sci. Eng. A 286 (2000), p.157.

Google Scholar

[6] J. Jiao, S. Seraphin: J. Phys. Chem. Solids 61 (2000), p.1055.

Google Scholar

[7] E. Flahaut, F. Agnoli, J. Solan, C. O'Connor, M.L.H. Green: Chem. Mater. 14 (2002), p.2553.

Google Scholar

[8] Z.H. Wang, C.J. Choi, B.K. Kim, J.C. Kim, Z.D. Zhang: Carbon 41 (2003), p.1751.

Google Scholar

[9] Z.H. Wang , Z.D. Zhang, C.J. Choi, B.K. Kim: J. Alloys and Compounds 361 (2003), p.289.

Google Scholar

[10] B.H. Liu, J. Ding, Z.Y. Zhong, Z.L. Dong, T. White: Chem. Phys. Lett. 358 (2002), p.96.

Google Scholar

[11] L.B. Avdeeva, D.I. Kochubey, Sh.K. Shaikhutdinov: Appl. Catal. A-Gen. 177 (1999), p.43.

Google Scholar

[12] W. Qian, T. Liu, F. Wei, Z. Wang, Y. Li: Appl. Catal. A-Gen. 258 (2004), p.121.

Google Scholar

[13] H.Y. Wang, E. Ruckenstein: Carbon 40 (2002), p. (1911).

Google Scholar

[14] A. Lim, A. Shimizu, S.H. Yoon, Y. Korai, I. Mochida: Carbon 42 (2004), p.1273.

Google Scholar

[15] Z. Zhong, H. Chen, S. Tang, J. Ding, J. Lin, K.L. Tan: Chem. Phys. Lett. 330 (2000), p.41.

Google Scholar

[16] Z. Zhong, B. Liu, L. Sun, J. Ding, J. Lin, K.L. Tan: Chem. Phys. Lett. 362 (2002), p.135.

Google Scholar

[17] X. Ma, Y. Cai, N. Lun, Q. Ao, S. Li, F. Li, S. Wen: Mater. Lett. 57 (2003), p.2879.

Google Scholar

[18] H. Dai, A.G. Rinzler, P. Nikolaev, A. Thess, D.T. Colbert: Chem. Phys. Lett. 260 (1996), p.471.

Google Scholar

[19] X. Ma, Y. Cai, X. Li, S. Wen: Mater. Sci. Eng. A 357 (2003), p.308.

Google Scholar

[20] R.K. Rana, X.N. Xu, Y. Yeshurun, A. Gedanken: J. Phys. Chem. B 106 (2002), p.4079.

Google Scholar

[21] Z. Lendzion-Bieluń, M. Podsiadły, U. Narkiewicz, W. Arabczyk: Rev. Adv. Mater. Sci. 12 (2006), p.145.

Google Scholar

[22] V. Ivanom, A. Fonseca, J.B. Nagy, A. Lucas, P. Lambin, D. Bernaerts, X.B. Zhang: Carbon 33 (1995), p.1727.

Google Scholar