Comparative Analysis of ZnS:Mn2+ Nanophosphors Prepared by Hydrothermal and Low Temperature Precipitation Methods

Article Preview

Abstract:

Manganese-doped ZnS nanophosphors were synthesized by two different methods: hydrothermal and low-temperature precipitation methods. The nanophosphors prepared by the hydrothermal precipitation and low-temperature methods had the size of 20 nm and 4 nm, respectively, and both were the cubic phase. The emission intensity of the nanophosphor prepared by the hydrothermal method was optimized at 10 mole % of Mn2+ concentration whereas that by low-temperature precipitation method was optimized at 3 mole % of Mn2+. The precipitationprepared nanophosphor, of size 4nm, showed a blueshift in the excitation spectrum and a redshift in the emission spectrum compared to the hydrothermal-prepared 20 nm nanophosphor. These phenomena can be explained in terms of the quantum confinement effect. The decay times especially were lengthened with decreasing particle size. This can be explained in terms of the variation in the transition probability induced from the quantum confinement effect.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 128)

Pages:

53-58

Citation:

Online since:

October 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R.N. Bhargava and D. Gallagher: Phys. Rev. Lett. Vol. 72 (1994), p.416.

Google Scholar

[2] W.C.W. Chen, S. Nie: Science Vol. 281 (1998), p. (2016).

Google Scholar

[3] F. Parsapour, D.F. Kelley, S. Craft, J.P. Wilcoxon: J. Chem. Phys. Vol. 104 (1996), p.4978.

Google Scholar

[4] K.E. Waldrip, J.S. Lewis III, Q. Zhai, M.R. Davidson, P.H. Holloway, S.S. Sun: Appl. Phys. Lett. Vol. 76 (2000), p.1276.

Google Scholar

[5] He Hu and Weihua Zhang: Optical Materials, Vol. 28 (2006), p.536.

Google Scholar

[6] K. Sooklal, B.S. Cullum, S.M. Angel, C.J. Murphy: J. Phys. Chem. Vol. 100 (1996), p.4551.

Google Scholar

[7] A.A. Khosravi, M. Kundu, B.A. Kuruvilla, G.S. Shekhawat, R.P. Gupta, A.K. Sharma, P.D. Vyas, S.K. Kulkarni: Appl. Phys. Lett. Vol. 67 (1995), p.2506.

DOI: 10.1063/1.114440

Google Scholar

[8] P. Xie, W. Zhang, M. Yin, H. Chen, W. Zhang, L. Lou, S. Xia: J. Colloid Interface Sci. Vol. 229 (2000), p.534.

Google Scholar

[9] A. A. Bol and A. Meijerink: Phys. Rev. Vol. B 58 (1998), p. R15997.

Google Scholar

[10] N. Murase, R. Jagannathan, Y. Kanematsu, M. Watanabe, A. Kurita, K. Hirata, T. Yazawa, and T. Kushida: J. Phys. Chem. Vol. B 103 (1999), p.754.

DOI: 10.1021/jp9828179

Google Scholar

[11] L.M. Gan, B. Liu, C.H. Chew, S.J. Xu: Langmuer Vol. 13 (1997), p.6427.

Google Scholar

[12] Xi-Bin Yu, Li-Hong Mao, Zhang-Fan, Liang-Zhun Yang, and Shi-Ping Yang: Mater. Lett. Vol. 58 (2004), p.3661.

Google Scholar

[13] Bin Xia, I. Wuled Lenggoro, and Kikuo Okuyama: Chem. Mater. Vol. 14 (2002), p.4969.

Google Scholar

[14] C. Falcony, M. Garcia, A. Ortiz, and J.C. Alonso: J. Appl. Phys. Vol. 72 (1992), p.1525.

Google Scholar

[15] G. L. Messing, S. C. Zhang, G. V. Jayanthi: J. Am. Ceram. Soc. Vol. 76 (1993), p.2707.

Google Scholar

[16] P.E. Lippens and M. Lannoo: Phys. Rev. Vol. B 39 (1089), p.10935.

Google Scholar

[17] L. Chen, J. Kampmann, P. J. Klar, W. Heimbrodt, F. J. Brieler, and M. Fröba: Phys. Stat. Sol. (b) Vol. 243 (2006), p.839.

DOI: 10.1002/pssb.200564623

Google Scholar