Doping and Characterisation of Nanocrystalline Materials

Article Preview

Abstract:

The synthesis behaviour and characterisation of nanocrystalline materials is presented. The materials synthesised are ZnO and InP doped with shallow donors and acceptors, respectively. Characterisation was performed with radioactive isotopes using the perturbed γγ angular correlation technique (PAC), thereby yielding local information on an atomic scale. The characterisation was supplemented by X-ray diffraction, transmission electron microscopy, UV/VIS absorption spectroscopy, photoluminescence spectroscopy, and extended X-ray absorption fine structure spectroscopy. It was shown that the successful incorporation of dopants in nanocrystalline ZnO and InP requires annealing at temperatures at which the growth of the nanocrystals in the sample becomes a significant process.

You might also be interested in these eBooks

Info:

[1] A.P. Alivisatos: Science Vol. 271 (1996), p.933.

Google Scholar

[2] W.U. Huynh, J.J. Dittmer and A.V. Alivisatos: Science Vol. 295 (2002), p.2425.

Google Scholar

[3] S.A. Wolf, D.D. Awschalom, R.A. Buhrmann, J.M. Daughton, S. von Molnar, M.L. Roukes, A.Y. Chtchelkanova and D.M. Treger: Science Vol. 294 (2001), p.1488.

DOI: 10.1126/science.1065389

Google Scholar

[4] G. Galli: Nature Vol. 436 (2005), p.32.

Google Scholar

[5] M. Shim, C. Wang, D.J. Norris and P. Guyot-Sionnest: MRS Bulletin Vol. 26 (2001), p.1005.

Google Scholar

[6] J. Rockenberger, U. zum Felde, M. Tischer, L. Tröger, M. Haase and H. Weller: J. Chem. Phys. Vol. 112 (2000), p.4296.

Google Scholar

[7] M. Fujii, A. Mimura, S. Hayashi, Y. Yamamoto and K. Murakami: Phys. Rev. Lett. Vol. 89 (2002), p.206805.

Google Scholar

[8] Th. Agne, Z. Guan, R. Hempelmann, X. M. Li, H. Natter, H. Wolf and Th. Wichert: Appl. Phys. Lett. Vol. 83 (2003), p.1204.

DOI: 10.1063/1.1598289

Google Scholar

[9] G. S. Collins and P. Sinha: Hyperfine Interact. Vol. 130 (2000), p.151.

Google Scholar

[10] H. Wolf, S. Deubler, D. Forkel, H. Foettinger, M. Iwatschenko-Borho, F. Meyer, M. Renn, W. Witthuhn and R. Helbig: Mater. Sci. Forum Vol. 10-12 (1986), p.863.

DOI: 10.4028/www.scientific.net/msf.10-12.863

Google Scholar

[11] G. Schatz, A. Weidinger and J.A. Gardner: Nuclear Condensed Matter Physics (John Wiley & Sons, New York 1996).

Google Scholar

[12] Th. Wichert, in: Identification of Defects in Semiconductors, edited by M. Stavola, volume 51B of Semiconductors and Semimetals, chapter 6, Academic Press, London (1999).

Google Scholar

[13] Th. Agne, Z. Guan, X. M. Li, H. Wolf and Th. Wichert: phys. stat. sol. (b) Vol. 229 (2002), p.819.

Google Scholar

[14] A. Dierstein, H. Natter, F. Meyer, H. -O. Stephan, Ch. Kropf and R. Hempelmann: Scripta Mater. Vol. 44 (2001), p.2209.

DOI: 10.1016/s1359-6462(01)00906-x

Google Scholar

[15] J. Rockenberger, L. Tröger, A. Kornowski, T. Vossmeyer, A. Eychmüller, J. Feldhaus and H. Weller: J. Phys. Chem. B Vol. 101 (1997), p.2691.

DOI: 10.1021/jp963266u

Google Scholar

[16] B.E. Warren and L.E. Averbach: J. Appl. Phys. Vol. 21 (1950), p.595; Vol. 23 (1952), p.497.

Google Scholar

[17] H. Natter, M. Schmelzer, M. -S. Löffler, C.E. Krill, A. Fitch and R. Hempelmann: J. Phys. Chem B Vol. 104 (2000), p.2467.

Google Scholar

[18] Th. Agne: Thesis, Universität des Saarlandes (2004).

Google Scholar

[19] E.A. Meulenkamp: J. Phys. Chem. B Vol. 102 (1998), p.5566.

Google Scholar

[20] Landolt/Börnstein, in: Numerical Data and Functional Relationships in Science and Technology, New Series III, edited by U. Rössler, Vol. 41B (Springer, Berlin, 1999).

Google Scholar

[21] K. Vanheusden, W.L. Warren, C.H. Seager, D.R. Tallant, J.A. Voig and B.E. Gnade: J. Appl. Phys. Vol. 79 (1996), p.7983.

Google Scholar

[22] E. Mollwo, G. Müller and P. Wagner: Solid State Comm. Vol. 13 (1973), p.1283.

Google Scholar

[23] J.J. Rehr and R.C. Albers: Rev. Mod. Phys. Vol. 72 (2000), p.621.

Google Scholar

[24] E.A. Stern, M. Newville, B. Ravel, Y. Yacoby and D. Haskel: Physica B Vol. 208-209 (1995), p.154.

DOI: 10.1016/0921-4526(94)00655-f

Google Scholar

[25] M. Newville: J. Synchrotron Rad. Vol. 8 (2001), p.322.

Google Scholar

[26] J.J. Rehr, R.C. Albers and S.I. Zabinsky: Phys. Rev. Lett. Vol. 69 (1992), p.3397.

Google Scholar

[27] T. Agne, M. Deicher, V. Koteski, H. -E. Mahnke, H. Wolf and T. Wichert: Hyperfine Interact. Vol. 159 (2004), p.55.

DOI: 10.1007/s10751-005-9081-8

Google Scholar

[28] A.C. Carter et al.: Phys. Rev. B Vol. 55 (1997), p.13822.

Google Scholar

[29] A.A. Guzelian, J.E.B. Katari, A.V. Kadavanich, U. Banin, K. Hamad, E. Juban and A.P. Alivisatos: J Phys. Chem. Vol. 100 (1996), p.7212.

DOI: 10.1021/jp953719f

Google Scholar

[30] O.I. Micic, K.M. Jones, A. Cahill and A.J. Nozik: J. Phys. Chem. B Vol. 102 (1998), p.9791; and references therein.

Google Scholar

[31] E. Recknagel, G. Schatz and Th. Wichert in: Hyperfine Interactions of Radioactive Nuclei, edited by J. Christiansen, Topics in Current Physics, Vol. 31, (Springer, Berlin 1983) p.133.

DOI: 10.1007/978-3-642-81969-8_4

Google Scholar

[32] S. Roy and M. Springborg: J. Phys. Chem. A Vol. 109 (2005), p.1324.

Google Scholar